© Cepos insilico
 Science for Scientists

PARASURF

Impressum

CEPOS

TABLE OF CONTENTS

PROGRAM HISTORY

1 INTRODUCTION 6
1.1 Changes relative to ParaSurf' $10^{\text {t" }}$ 7
1.1.1 New enhanced autocorrelation facility 7
1.1.2 Additional elements 7
1.1.3 Improved surface-integral models; local hydrophobicity 7
1.1.4 Improved error-Handling 7
1.1.5 Field Error 7
1.1.6 Grid output 7
1.1.7 .psf File format 7
1.2 Isodensity surfaces 8
1.3 Solvent-excluded surfaces 8
1.4 Solvent-accessible surfaces 8
1.5 Shrink-wrap surface algorithm 9
1.6 Marching-cube algorithm 11
1.7 Spherical-harmonic fitting 12
1.8 Local properties 14
1.8.1 Molecular electrostatic potential 14
1.8.1.1 The natural atomic orbital/PC (NAO-PC) model 14
1.8.1.2 The multipole model 14
1.8.2 Local ionization energy, electron affinity, hardness and electronegativity 15
1.8.3 Local polarizability 16
1.8.4 Field normal to the surface 16
1.9 Descriptors 17
1.10 Surface-integral models (polynomial version) 22
1.11 Binned surface-integral models 23
1.12 Spherical harmonic "hybrids" 24
1.13 Descriptors and moments based on polynomial surface-integral models 24
1.14 Shannon entropy 25
1.15 Surface autocorrelations 27
1.16 Standard Rotationally Invariant Fingerprints (RIFs) 29
1.17 Maxima and Minima of the Local Properties 29
1.18 Atom-centred descriptors 29
1.19 Fragment analysis 29
2 PROGRAM OPTIONS 30
2.1 Command-line options 30
2.2 Options defined in the input SDF-file 34
2.2.1 Defining the centre for spherical-harmonic fits 34
2.2.2 Defining fragments 34
3 INPUT AND OUTPUT FILES 38
3.1 The VAMP .sdf file as input 39
3.1.1 Multi-structure SD-files 41
3.2 The Cepos MOPAC 6.sdf file as input 41
3.3 The Vhamil.par file 42
3.4 The ParaSurf ${ }^{\text {TM }}$ output file 42
3.4.1 For a spherical-harmonic surface 42
3.4.2 For a marching-cube surface 51
3.4.3 For a job with Shannon entropy 59
3.4.4 For a job with autocorrelation similarity 61
3.5 ParaSurf ${ }^{\text {Tm }}$ SDF-output 62
3.5.1 Optional blocks in the SDF-output file 65
3.6 The surface (.psf) file 68
3.7 Anonymous SD (.asd) files 68
3.7.1 Optional blocks 70
3.8 Grid calculations with ParaSurf ${ }^{T M}$ 71
3.8.1 User-specified Grid 71
3.8.2 Automatic grids 73
3.9 The SIM file format 73
3.10 Output tables 74
3.11 Binned SIM descriptor tables 78
3.12 Autocorrelation fingerprint and similarity tables 79
3.13 Shared files 79
4 TIPS FOR USING PARASURF' $11^{\text {Tm }}$ 80
4.1 Choice of surface 80
4.2 ParaSurf ${ }^{\text {TM }}$ and ParaFit ${ }^{\text {TM }}$ 80
4.3 QSAR using grids 80
5 SUPPORT 81
5.1 Contact 81
5.2 Error reporting 81
5.3 CEPOS InSilico Ltd. 81
6 LIST OF TABLES 82
7 LIST OF FIGURES 83
8 REFERENCES 84

PROGRAM HISTORY

Release Date	Version	Platforms
$1^{\text {st }}$ July 2005	ParaSurf'05 ${ }^{\text {™ }}$ initial release (Revision A1)	32-bit Windows 32-bit Linux Irix
$1^{\text {st }}$ January 2006	ParaSurf'05 ${ }^{\text {tw }}$ Revision B1 (customer-feedback release)	
$1^{\text {st }}$ July 2006	ParaSurf'06 ${ }^{\text {™ }}$ Revision A 1	32-bit Windows 32-bit Linux
$1^{\text {st }}$ July 2007	ParaSurf' $07{ }^{\text {™ }}$ Revision A 1	64-bit Linux Irix
$1^{\text {st }}$ July 2008	ParaSurf' $08{ }^{\text {m" }}$ Revision A 1	32-bit Windows 64-bit Windows 32-bit Linux 64-bit Linux
$22^{\text {nd }}$ August 2008	ParaSurf'08 ${ }^{\text {mw }}$ Revision A2 (minor bug fix release)	
$16^{\text {th }}$ December 2008	ParaSurf'08 ${ }^{\text {mw }}$ Revision A3 (minor bug fix release)	
$1^{\text {st }}$ July 2009	ParaSurf' $09^{\text {T"' }}$ Revision A1	
$1^{\text {st }}$ September 2009	New Vhamil.par file including PM6 and first-row transition metals in AM1*	
$1^{\text {st }}$ February 2010	ParaSurf' $09^{\text {T" }}$ Revision B1 (additional atom-centred descriptors)	
$1^{\text {st }}$ July 2010	ParaSurf' $10^{\text {T"M }}$ Revision A1	
$1^{\text {st }}$ July 2011	ParaSurf $11{ }^{\text {T"I }}$ Revision A1	

1 INTRODUCTION

ParaSurf ${ }^{\text {Tw }}$ is a program to generate isodensity or solvent-excluded surfaces from the results of semiempirical molecular orbital calculations, either from VAMP [1] or a public-domain version of MOPAC modified and made available by Cepos InSilico. [2] The surface may be generated by shrinkwrap [3] or marching-cube [4] algorithms and the former may be fit to a spherical harmonic series. [5] The principles of these two techniques are explained below, but for comparison Figure 1 shows default isodensity surfaces calculated by ParaSurf ${ }^{\text {T" }}$ for a tetracycline derivative. The surfaces are color-coded according to the electrostatic potential at the surface.

Figure 1 Marching-cube (left) and shrink-wrap (right, fitted to a spherical-harmonic approximation) isodensity surfaces calculated with ParaSurf'm using the default settings.

Four local properties, the molecular electrostatic potential (MEP), [6] the local ionization energy (I_{L}), [7] the local electron affinity ($\mathrm{EA}_{\llcorner }$), [8] and the local polarizability ($\alpha_{\llcorner }$) [8] are calculated at the points on the surface. Two further properties, the local hardness ($\eta_{\llcorner }$), [8] and the local electronegativity ($\chi_{\llcorner }$) [8] can be derived from IE_{L} and $E A_{L}$.

The local properties can be used to generate a standard set of 81 descriptors [9] appropriate for quantitative structure-property relationships (QSPRs) for determining physical properties.

ParaSurf ${ }^{\text {m" }}$ can also generate local enthalpies and free energies of solvation [10] and integrate them over the entire molecular surface to give the enthalpy or free energy of solvation. ParaSurf ${ }^{\text {m" }}$ can read so-called Surface-Integral Model (SIM) files that allow it to calculate properties such as, for instance, the enthalpy and free energy of hydration and the free energies of solvation in n-octanol and chloroform. The surface-integral models are expressed as summations of local solvation energies over the molecular surface. These local solvation energies can be written to the ParaSurf ${ }^{\text {m" }}$ surface file.

ParaSurf ${ }^{\text {Tw }}$ is the first program to emerge from the ParaShift collaboration between researchers at the Universities of Erlangen, Portsmouth, Southampton, Oxford and Aberdeen. It is intended to provide the molecular surfaces for small molecules (i.e. non-proteins) for subsequent quantitative structureactivity relationship (QSAR), QSPR, high-throughput virtual screening (HTVS), docking and scoring, pattern-recognition and simulation software that will be developed in the ParaShift project.

1.1 Changes relative to ParaSurf' 10^{TM}

ParaSurf' $11^{T M}$ has been enhanced relative to its predecessor in order to provide improved flexibility and a more comprehensive range of descriptors and features. The changes are outlined below:

1.1.1 New enhanced autocorrelation facility

The surface autocorrelation capability of ParaSurf $11^{\text {T" }}$ replaces the slower version implemented in previous versions. Both 64 -bin autocorrelation functions and Tanimoto similarities to a lead compound can be written to table files. Details are given in 1.15.

1.1.2 Additional elements

ParaSurf' $11^{\text {TM }}$ can be used with PM6 [11] for 70 elements and for AM1* with three new elements, Ag, Pd and Au.

1.1.3 Improved surface-integral models; local hydrophobicity

New second-generation surface-integral models based on both CORINA conformations and Boltzmann-weighted conformational ensembles [12] have replaced the models provided in ParaSurf'10. [13, 14]

1.1.4 Improved error-Handling

A series of additional error-checks have been implemented in ParaSurf' 11^{TM} in order to trap error conditions that led to batch jobs being terminated with ParaSurf' 10^{TM}.

1.1.5 Field Error

An error in the calculation of the field normal to the surface has been corrected. The values output by ParaSurf'10 ${ }^{\text {TM }}$ were incorrect.

1.1.6 Grid output

The value of the electron density output in grid calculations has been replaced by its $\log _{10}$ to enable the table to be used directly in partial least squares analyses.

1.1.7 .psf File format

The .psf file, which defines the molecular surface, has been extended (see 3.6). This has necessitated a change in the file format between ParaSurf' $10^{\text {TM }}$ and ParaSurf $11^{T \mathrm{~m}}$.

1.2 Isodensity surfaces

Isodensity surfaces [15] are defined as the surfaces around a molecule at which the electron density has a constant value. Usually this value is chosen to approximate the van der Waals' shape of the molecule. ParaSurf ${ }^{\text {TM }}$ allows values of the isodensity level down to $0.00001 \mathrm{e}^{-} \AA^{-3}$. Lower values than this may result in failures of the surface algorithms for very diffuse surfaces.

1.3 Solvent-excluded surfaces

The solvent-excluded surface is obtained by rolling a spherical solvent molecule of radius $r_{\text {solv }}$ over the surface of the molecule as shown in Figure 2. The surface of the solvent molecule defines the molecular surface, so that the yellow volume in Figure 2 becomes part of the molecule.

Figure 2 2D-representation of a solvent-excluded surface.

1.4 Solvent-accessible surfaces

Solvent-accessible surfaces are obtained in the same way as solvent-excluded surfaces but the outer surface of the solvent sphere is used to define the molecular surface, as shown in Figure 3.

Figure 3 The solvent-accessible surface is obtained by rolling a spherical "solvent molecule".

1.5 Shrink-wrap surface algorithm

Shrink-wrap surface algorithms [3] are used to determine single-valued molecular surfaces. Singlevalued in this case means that for any given radial vector from the centre of the molecule the surface is only crossed once (vectors \mathbf{A} and \mathbf{B} in Figure 4) and not multiply (vectors \mathbf{C} and \mathbf{D} in Figure 4):

Figure 4 2D-representation of a molecular surface with single-valued (A and B) and multiply valued (C and D) radial vectors from the centre.

Single-valued surfaces are necessary for spherical-harmonic fitting (see 1.4). Thus, sphericalharmonic fitting is only available for shrink-wrap surfaces in ParaSurf ${ }^{\text {™ }}$. The shrink-wrap algorithm works by starting outside the molecule (point a in Figure 5) and moving inwards along the radial vector until it finds the surface (in our case defined by the predefined level of the electron density, point \mathbf{b} in Figure 5). Thus, the shrink-wrapped surface may contain areas (marked by dashed lines in Figure 5) for which the surface deviates from the true isodensity surface.

These areas of the surface, however, often have little consequence as they are situated above indentations in the molecule that are poorly accessible to solvents or other molecules. The shrinkwrapped surfaces generated by ParaSurf ${ }^{\text {m" }}$ should normally be fitted to a spherical-harmonic series for use in HTVS, similarity, pattern-recognition or high-throughput docking applications. The default molecular centre in ParaSurf ${ }^{\text {m" }}$ is the centre of gravity (CoG). In special cases in which the CoG lies outside the molecule, another centre may be chosen.

Figure 5 2D-representation of the shrink-wrap algorithm. The algorithms scans along the vector from point a towards the centre of the molecule until the electron density reaches the preset value (point b). The algorithm results in enclosures (marked yellow) for multi-valued radial vectors.

Figure 6 shows a spherical-harmonically fitted shrink-wrap surface for a difficult molecule. The areas shown schematically in Figure 5 are clearly visible.

Figure 6 Spherical-harmonic approximation of a shrink-wrap isodensity surface. Note the areas where the surface does not follow the indentations of the molecule.

1.6 Marching-cube algorithm

The marching-cube algorithm [4] implemented in ParaSurf ${ }^{\mathrm{Tm}}$ does not have the disadvantage of being single-valued like the shrink-wrap surface. It cannot, therefore, be fitted to a spherical harmonic series and is used as a purely numerical surface primarily for QSPR applications or surface-integral models. [10] The algorithm works by testing the electron density at the corners of cubes on a cubic lattice laid out through the molecular volume. The corners are divided into those "inside" the molecule (i.e. with a higher electron density than the preset value) and those "outside". The surface triangulation is then generated for each surface cube and the positions of the surface points corrected to the preset electron density.

Figure 7 Spherical-harmonic approximation of a shrink-wrap isodensity surface. Note the areas where the surface does not follow the indentations of the molecule.

1.7 Spherical-harmonic fitting

Complex surfaces can be fitted to spherical harmonic series to give analytical approximations of the surface. [5] The surfaces are fit to a series of distances $r_{\alpha, \beta}$ from the centre along the radial vector defined by the angles α and β as:

$$
\begin{equation*}
r_{\alpha, \beta}=\sum_{l=0}^{N} \sum_{m=-l}^{l} c_{l}^{m} Y_{l}^{m} \tag{1}
\end{equation*}
$$

Where the distances $r_{\alpha, \beta}$ are linear combinations of spherical harmonics Y_{l}^{m} defined as:

$$
\begin{equation*}
Y_{l}^{m}(\alpha, \beta)=\sqrt{\frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}} P_{l}^{m}(\cos \alpha) e^{i m \beta} \tag{2}
\end{equation*}
$$

where $P_{l}^{m}(\cos \alpha)$ are associated Legendre functions and l and m are integers such that $-l<=m<=l$. In the above form, spherical harmonics are complex functions. Duncan and Olson [16] have used the real functions

$$
\begin{equation*}
Y_{l}^{m}(\alpha, \beta)=N_{l m} P_{l}^{m}(\cos \alpha) \cos |m| \beta \tag{3}
\end{equation*}
$$

where $N_{l m}$ are normalization factors, to describe molecular surfaces using spherical harmonics.
ParaSurf ${ }^{\text {T"M }}$ not only fits the surface itself (i.e. the radial distances) to spherical harmonic expansions, but also the four local properties (see 1.8). In this way, a completely analytical description of the shape of the molecule and its intermolecular binding properties is obtained. [17] This description can be truncated at different orders l depending on the application and the precision needed. Thus, a simple description of the molecular properties (shape, MEP, $\mathrm{IE}_{\mathrm{L}}, E \mathrm{EA}_{\mathrm{L}}$ and α_{L}) to order 2 consists of only five sets of nine coefficients each, or 45 coefficients. These coefficients can be rotated, overlaps calculated etc. [5] to give fast scanning of large numbers of compounds.

Note that, because of the approximate nature of the spherical-harmonic fits, the default isodensity level for the shrink-wrapped surface ($0.00002 \mathrm{e}^{-} \mathrm{A}^{-3}$) is lower than that ($0.0003 \mathrm{e}^{-} \mathrm{A}^{-3}$) appropriate for an approximately van der Waals' surface using the marching-cube algorithm. The lower value avoids the surface coming too close to atoms. Note also that the fits are incremental, which means that the order chosen for a given application can be obtained by ignoring coefficients of higher order in the sphericalharmonic series.

In some cases, the default resolution of the molecular surface does not allow fitting the sphericalharmonic expansion to very high orders without introducing noise ("ripples") on the fitted surface. In this case, the calculated RMSD becomes larger at higher orders of the spherical-harmonic expansion. ParaSurf $11^{\text {T"M }}$ recognizes this condition and truncates the fitting procedure th the optimum value. This can be recognized in the output because the RMSD for later cycles remains constant and the coefficients of the higher order spherical harmonics are all zero. This guarantees the optimum fit in each case and is important for applications that use either the spherical-harmonic coefficients themselves or the hybridization coefficients.

The choice of centre for fitting to a spherical-harmonic expansion is critical. ParaSurf $11^{T m}$ therefore goes through a multi-step procedure in order to find a suitable centre. This procedure is retained for all molecules for which the ParaSurf' $08^{\text {T" }}$ found a suitable centre. However, if the algorithms implemented in ParaSurf $08^{\text {™ }}$ fail to find a suitable centre, the additional technique implemented in ParaSurf $11^{\text {™ }}$ will probably work.

The problem with many molecules is that, for instance, the centre of mass does not lie within the molecular volume. This can easily be the case for, for instance, U- or L-shaped molecules. The procedure implemented in ParaSurf' $11^{\text {m" }}$ works as follows:

1. The program first calculates the centre of mass and tests whether it lies within the volume of the molecule. If it does, it is used as the molecular centre. If not, the program moves on to the next step.
2. ParaSurf ${ }^{\text {T" }}$ calculates the principal moments of inertia of the molecule and derives a centre from them by assuming that the molecule is U - or V -shaped. The procedure tries to place the centre at the base centre of the molecule. This procedure was implemented in ParaSurf $08^{\text {mim }}$ as a fallback if the centre of mass proved unsuitable. If it also fails to find a suitable centre, ParaSurf $11^{\text {Tm }}$ moves on to a third option, which finds a centre for all but the most difficult molecules.
3. The new procedure first searches for the largest plane in the molecule (i.e. the one that contains the most atoms). This search has some leeway, so that the atoms must not all lie exactly in the plane. As a second step, the second largest plane is sought. The molecular centre is then placed in the hinge area between the two planes, as illustrated in Figure 8:

Figure 8 Schematic representation of the planes and hinge area used to determine the centre for spherical-harmonic expansions.

1.8 Local properties

The local properties calculated by ParaSurf ${ }^{\text {T" }}$ are those related to intermolecular interactions. Local properties, sometimes inaccurately called fields in QSAR work, are properties that vary in space around the molecule and therefore have a distribution of values at the molecular surface. The best known and most important local property in this context is the molecular electrostatic potential, which governs Coulomb interactions, but the MEP only describes a part of the intermolecular interaction energy, so that further local properties are needed.

1.8.1 Molecular electrostatic potential

The MEP is defined in ParaSurf ${ }^{\text {m" }}$ as the energy of interaction of a single positive electronic charge at the position \boldsymbol{r} with the molecule. Within quantum mechanical (semiempirical or ab initio molecular orbital (MO) theory, density functional theory (DFT)) the MEP $(\mathrm{V}(r)$) is described [6] as:

$$
\begin{equation*}
\operatorname{MEP}(\mathbf{r})=\sum_{i=1}^{n} \frac{Z_{i}}{\left|\mathbf{R}_{\mathbf{i}}-\mathbf{r}\right|}-\int \frac{\rho\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}-\mathbf{r}\right|} \tag{4}
\end{equation*}
$$

where n is the number of atoms in the molecule, Z_{i} is the nuclear charge of atom i located at $\mathbf{R}_{\mathbf{i}}$ and $\rho(\mathbf{r})$ is the electron-density function of the molecule. This expression, however, involves integrating the electron density, a time-consuming calculation. ParaSurf ${ }^{\text {T" }}$ therefore uses two different approximate models for calculating the MEP.

1.8.1.1 The natural atomic orbital/PC (NAO-PC) model

The NAO-PC model $[18,19]$ uses a total of nine point charges, one positive charge at the nucleus and eight negative ones distributed around it, to describe the electrostatics of a nonhydrogen atom with a valence-only s - and p-basis set for the semiempirical Hamiltonians MNDO, [20] AM1 [21] and PM3. [22] The negative charges are located at the charge centres of each lobe of the natural atomic orbitals, which are obtained by diagonalising the one-atom blocks of the density matrix. [18] The NAO-PC charges are calculated by VAMP and output in the .sdf file for use in ParaSurf ${ }^{\text {m" }}$. The NAO-PC model is therefore only available when using ParaSurf ${ }^{\text {t" }}$ with VAMP .sdf input. NAO-PC charges are also not available for semiempirical Hamiltonians such as MNDO/d [23] or AM1* [24] that use d-orbitals in the basis set.

1.8.1.2 The multipole model

The integrals needed to evaluate equation (4) in MNDO-type methods use a multipole approximation $[20,23]$ that extends to quadrupoles. We can therefore also use this approximation to calculate atom-centred monopoles, dipoles and quadrupoles for each atom in the molecule. [25] This multipole model is applicable to all methods, including those with d-orbitals, and can be used with MOPAC output files as input to ParaSurf ${ }^{\text {T"I }}$.

1.8.2 Local ionization energy, electron affinity, hardness and electronegativity

The local ionization energy $I E_{L}(\mathbf{r})$ is defined [7] as a density-weighted Koopmans' ionization potential at a point \mathbf{r} near the molecule:

$$
\begin{equation*}
I E_{L}(\mathbf{r})=\frac{-\sum_{i=1}^{\text {HOMO }} \rho_{i}(\mathbf{r}) \varepsilon_{i}}{\sum_{i=1}^{\text {HOMO }} \rho_{i}(\mathbf{r})} \tag{5}
\end{equation*}
$$

where $H O M O$ is the number of the highest occupied $\mathrm{MO}, \rho_{i}(\mathbf{r})$ is the electron density at point \mathbf{r} due to $\mathrm{MO} i$ and ε_{i} is its Eigenvalue. The local ionization energy describes the tendency of the molecule to interact with electron acceptors (Lewis acids) in a given region in space. [7, 8]

The definition of the local electron affinity is a simple extension of equation (5) to the virtual MOs: [8]

$$
\begin{equation*}
E A_{L}(\mathbf{r})=\frac{-\sum_{i=L U M O}^{\text {norbs }} \rho_{i}(\mathbf{r}) \varepsilon_{i}}{\sum_{i=L U M O}^{\text {norbs }} \rho_{i}(\mathbf{r})} \tag{6}
\end{equation*}
$$

The local electron affinity is the equivalent of the local ionization energy for interactions with electron donors (Lewis bases). [8] An intensity-filtering technique [26] was introduced in ParaSurf' $11^{\text {тM }}$ to allow the local electron affinity to be calculated for Hamiltonians such as AM1* and MNDO/d that use polarisation d-functions.

Equation (6) requires that the occupied and virtual orbitals be approximately equivalent to each other. This is not the case for semiempirical Hamiltonians (such as AM1*) that include d-orbitals as polarisation functions or for extensive basis sets in Hartree-Fock ab initio or in DensityFunctional theory (DFT) calculations. A new technique has therefore been defined [26] to exclude pure polarisation functions from the summation in equation (6). This technique is now default in ParaSurf' $11^{\text {tM }}$ and gives reliable results. For continuity, a new command-line option (EALO9) has been introduced to request that the calculation of the local electron affinity be performed exactly as in ParaSurf' $09^{\text {TM }}$ and earlier versions.

Two further, less fundamental local properties have been defined. [8] These are the local hardness, η_{L} :

$$
\begin{equation*}
\eta_{L}=\frac{\left(I E_{L}-E A_{L}\right)}{2} \tag{7}
\end{equation*}
$$

and the local electronegativity, χ_{L} :

$$
\begin{equation*}
\chi_{L}=\frac{\left(I E_{L}+E A_{L}\right)}{2} \tag{8}
\end{equation*}
$$

1.8.3 Local polarizability

Within the NDDO, the molecular electronic polarizability is easily accessible using the parameterized version [27] of the variational technique introduced by Rivail, [28] which can also be partitioned into an additive polarizability scheme. [29] This allows us to define the local polarizability, α_{L}, at a point near the molecule as

$$
\begin{equation*}
\alpha_{L}(\mathbf{r})=\frac{\sum_{j=1}^{\text {norbs }} \rho_{j}^{1}(\mathbf{r}) q_{j} \bar{\alpha}_{j}}{\sum_{j=1}^{\text {norbs }} \rho_{j}^{1}(\mathbf{r}) q_{j}} \tag{9}
\end{equation*}
$$

where q_{j} is the Coulson occupation and $\bar{\alpha}_{j}$ the isotropic polarizability attributed to atomic orbital j. The density ρ_{j}^{1} is defined as the electron density at the point in question due to an exactly singly occupied atomic orbital j. The sum is now over atomic orbitals, rather than MOs as for the other local properties. Thus, the local polarizability is a simple occupation-weighted sum of the orbital polarisabilities in which the contribution of each AO is determined by the density of the individual AO at the point being considered.

1.8.4 Field normal to the surface

The electrostatic field (the first derivative of the potential) normal to the molecular surface is closely related to the electrostatic solvation energy in implicit solvation models. [30, 31] This field also has the advantage that it is largely independent of the total molecular charge, so that charged molecules can be compared with neutral ones. If the molecular electrostatic potential is used for this purpose, the charge of ions leads a shift in the potential descriptors, so that molecules and ions with different charges cannot be compared directly. The direction of the normal field (inwards or outwards) also defines, for instance hydrogen-bond donors and acceptors specifically.

1.9 Descriptors

A set of 81 molecular descriptors derived from the MEP, local ionization energy, $I E_{\mathrm{L}}$, electron affinity, $E A_{L}$, electronegativity, χ_{L}, hardness, η_{L}, and polarizability, α_{L} has been defined for QSPR-studies. [9] These and several related descriptors calculated and output by ParaSurf ${ }^{\text {TM }}$ are defined in the following table.

Table 1: \quad The descriptors calculated by ParaSurf ${ }^{\text {m" }}$

Descriptor	Description	Formula/ Reference	Symbol in CSV file
μ	Dipole moment		dipole
$\mu_{\text {D }}$	Dipolar density	[23]	dipden
α	Molecular electronic polarisabilty	[32]	polarizability
MW	Molecular weight		MWt
G	Globularity	[33]	globularity
A	Molecular surface area		totalarea
VOL	Molecular volume		volume
$\mathrm{V}_{\text {max }}$	Maximum (most positive) MEP	[34]	MEPmax
$\mathrm{V}_{\text {min }}$	Minimum (most negative) MEP		MEPmin
\bar{V}_{+}	Mean of the positive MEP values		meanMEP+
\bar{V}_{-}	Mean of the negative MEP values		meanMEP-
\bar{V}	Mean of all MEP values		meanMEP
ΔV	MEP-range		MEP-range
σ_{+}^{2}	Total variance in the positive MEP values		MEPvar+
σ_{-}^{2}	Total variance in the negative MEP values		MEPvar-
$\sigma_{\text {tot }}^{2}$	Total variance in the MEP		MEPvartot
v	MEP balance parameter		MEPbalance
$\sigma_{\text {tot }}^{2} v$	Product of the total variance in the MEP and the balance parameter		var*balance
γ_{1}^{V}	Skewness of the MEPdistribution	$\gamma_{1}^{\alpha_{L}}=\frac{\sum_{i=1}^{N}\left(\alpha_{L}^{i}-\bar{\alpha}_{L}\right)^{3}}{(N-1) \sigma^{3}}$	MEPskew

Descriptor	Description	Formula/ Reference	Symbol in CSV file
γ_{2}^{V}	Kurtosis of the MEPdistribution	$\gamma_{2}^{V}=\frac{\sum_{i=1}^{N}\left(V_{i}-\bar{V}\right)^{4}}{(N-1) \sigma^{4}}-3$	MEPkurt
\int_{V}	Integrated MEP over the surface	$\int_{V}=\sum_{i=1}^{N} V_{i} a_{i}$	MEPint
$I E_{L}^{\text {max }}$	Maximum value of the local ionization energy		IELmax
$I E_{L}^{\text {min }}$	Minimum value of the local ionization energy		IELmin
$\overline{I E_{L}}$	Mean value of the local ionization energy	$\overline{I E_{L}}=\frac{1}{N} \sum_{i=1}^{N} I E_{L}^{i}$	IELbar
$\Delta I E_{L}$	Range of the local ionization energy	$\Delta I E_{L}=I E_{L}^{\text {max }}-I E_{L}^{\min }$	IELrange
$\sigma_{I E}^{2}$	Variance in the local ionization energy	$\sigma_{I E}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[I E_{L}^{i}-\overline{I E_{L}}\right]^{2}$	IELvar
$\gamma_{1}^{I E_{L}}$	Skewness of the local ionization energy distribution	$\gamma_{1}^{I E_{L}}=\frac{\sum_{i=1}^{N}\left(I E_{L}^{i}-\overline{I E}_{L}\right)^{3}}{(N-1) \sigma^{3}}$	IELskew
$\gamma_{2}^{I E_{L}}$	Kurtosis of the local ionization energy distribution	$\gamma_{2}^{I E_{L}}=\frac{\sum_{i=1}^{N}\left(I E_{L}^{i}-\overline{I E}_{L}\right)^{4}}{(N-1) \sigma^{4}}-3$	IELkurt
$\int_{I E_{L}}$	Integrated local ionization energy over the surface	$\int_{I E_{L}}=\sum_{i=1}^{N} I E_{L}^{i} a_{i}$	IELint
$E A_{L}^{\text {max }}$	Maximum of the local electron affinity		EALmax
$E A_{L}^{\text {min }}$	Minimum of the local electron affinity		EALmin
$\overline{E A_{L+}}$	Mean of the positive values of the local electron affinity	$\overline{E A_{L+}}=\frac{1}{N^{+}} \sum_{i=1}^{N^{+}} E A_{L+}^{i}$	EALbar+
$\overline{E A_{L-}}$	Mean of the negative values of the local electron affinity	$\overline{E A_{L-}}=\frac{1}{N^{-}} \sum_{i=1}^{N^{-}} E A_{L-}^{i}$	EALbar-
$\overline{E A_{L}}$	Mean value of the local electron affinity	$\overline{E A_{L}}=\frac{1}{N} \sum_{i=1}^{N} E A_{L}^{i}$	EALbar
$\Delta E A_{L}$	Range of the local electron affinity	$\Delta E A_{L}=E A_{L}^{\text {max }}-E A_{L}^{\text {min }}$	EALrange

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\sigma_{E A+}^{2}$	Variance in the local electron affinity for all positive values	$\sigma_{E t+}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left[E A_{i}^{+}-\overline{E A^{+}}\right]^{2}$	EALvar+
$\sigma_{E A-}^{2}$	Variance in the local electron affinity for all negative values	$\sigma_{E A-}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[E A_{i}^{-}-\overline{E A^{-}}\right]^{2}$	EALvar-
$\sigma_{\text {EAtoot }}^{2}$	Sum of the positive and negative variances in the local electron affinity	$\sigma_{\text {EAtot }}^{2}=\sigma_{E A+}^{2}+\sigma_{E A-}^{2}$	EALvartot
$V_{E A}$	Local electron affinity balance parameter	$v_{E A}=\frac{\sigma_{E A+}^{2} \cdot \sigma_{E A-}^{2}}{\left[\sigma_{E A}^{2}\right]^{2}}$	EALbalance
$\delta \mathrm{A}_{E A}^{+}$	Fraction of the surface area with positive local electron affinity	$\begin{gathered} \delta \mathrm{A}_{E A}^{+}=\frac{\mathrm{A}_{E A}^{+}}{\mathrm{A}}, \\ \mathrm{~A}=\text { total surface area } \end{gathered}$	EALfraction+
$\mathrm{A}_{E A}^{+}$	Surface area with positive local electron affinity		EALarea+
$\gamma_{1}^{E A A_{t}}$	Skewness of the local electron affinity distribution	$\gamma_{1}^{E A_{L}}=\frac{\sum_{i=1}^{N}\left(E A_{L}^{i}-\bar{E} \bar{A}_{L}\right)^{3}}{(N-1) \sigma^{3}}$	EALskew
$\gamma_{2}^{E A_{L}}$	Kurtosis of the local electron affinity distribution	$\gamma_{2}^{E A_{L}}=\frac{\sum_{i=1}^{N}\left(E A_{L}^{i}-\bar{E} \bar{A}_{L}\right)^{4}}{(N-1) \sigma^{4}}-3$	EALkurt
$\int_{E A_{L}}$	Integrated local electron affinity over the surface	$\int_{I E_{L}}=\sum_{i=1}^{N} E A_{L}^{i} a_{i}$	EALint
$\alpha_{L}^{\text {max }}$	Maximum value of the local polarizability		POLmax
$\alpha_{L}^{\text {min }}$	Minimum value of the local polarizability		POLmin
$\overline{\alpha_{L}}$	Mean value of the local polarizability	$\overline{\alpha_{L}}=\frac{1}{N} \sum_{i=1}^{N} \alpha_{L}^{i}$	POLbar
$\Delta \alpha_{L}$	Range of the local polarizability	$\Delta \alpha_{L}=\alpha_{L}^{\text {max }}-\alpha_{L}^{\text {min }}$	POLrange
σ_{α}^{2}	Variance in the local polarizability	$\sigma_{\alpha}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[\alpha_{L}^{i}-\overline{\alpha_{L}}\right]^{2}$	POLvar
$\gamma_{1}^{\alpha_{L}}$	Skewness of the local polarizability distribution	$\gamma_{1}^{\alpha_{L}}=\frac{\sum_{i=1}^{N}\left(\alpha_{L}^{i}-\bar{\alpha}_{L}\right)^{3}}{(N-1) \sigma^{3}}$	POLskew

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\gamma_{2}^{\alpha_{L}}$	Kurtosis of the local polarizability distribution	$\gamma_{2}^{\alpha_{L}}=\frac{\sum_{i=1}^{N}\left(\alpha_{L}^{i}-\bar{\alpha}_{L}\right)^{4}}{(N-1) \sigma^{4}}-3$	POLkurt
$\int_{\alpha_{L}}$	Integrated local polarizability over the surface	$\int_{\alpha_{L}}=\sum_{i=1}^{N} \alpha_{L}^{i} a_{i}$	POLint
$\chi_{L}^{\text {max }}$	Maximum value of the local electronegativity		ENEGmax
$\chi_{L}^{\text {min }}$	Minimum value of the local electronegativity		ENEGmin
$\overline{\chi_{L}}$	Mean value of the local electronegativity	$\overline{\chi_{L}}=\frac{1}{N} \sum_{i=1}^{N} \chi_{L}^{i}$	ENEGbar
$\Delta \chi_{L}$	Range of the local electron electronegativity	$\Delta \chi_{L}=\chi_{L}^{\text {max }}-\chi_{L}^{\text {min }}$	ENEGrange
σ_{χ}^{2}	Variance in the local electronegativity	$\sigma_{\chi}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[\chi_{L}^{i}-\overline{\chi_{L}}\right]^{2}$	ENEGvar
$\gamma_{1}^{\chi_{L}}$	Skewness of the local electronegativity distribution	$\gamma_{1}^{\chi_{L}}=\frac{\sum_{i=1}^{N}\left(\chi_{L}^{i}-\bar{\chi}_{L}\right)^{3}}{(N-1) \sigma^{3}}$	ENEGskew
$\gamma_{2}^{\chi_{L}}$	Kurtosis of the local electronegativity distribution	$\gamma_{2}^{\chi_{L}}=\frac{\sum_{i=1}^{N}\left(\chi_{L}^{i}-\bar{\chi}_{L}\right)^{4}}{(N-1) \sigma^{4}}-3$	ENEGkurt
$\int_{\chi_{L}}$	Integrated local electronegativity over the surface	$\int_{\chi_{L}}=\sum_{i=1}^{N} \chi_{L}^{i} a_{i}$	ENEGint
$\eta_{L}^{\text {max }}$	Maximum value of the local hardness		HARDmax
$\eta_{L}^{\text {min }}$	Minimum value of the local hardness		HARDmin
$\overline{\eta_{L}}$	Mean value of the local hardness	$\overline{\eta_{L}}=\frac{1}{N} \sum_{i=1}^{N} \eta_{L}^{i}$	HARDbar
$\Delta \eta_{L}$	Range of the local electron hardness	$\Delta \eta_{L}=\eta_{L}^{\text {max }}-\eta_{L}^{\text {min }}$	HARDrange
σ_{η}^{2}	Variance in the local hardness	$\sigma_{\eta}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[\eta_{L}^{i}-\overline{\eta_{L}}\right]^{2}$	HARDvar
$\gamma_{1}^{\eta_{L}}$	Skewness of the local hardness distribution	$\gamma_{1}^{\eta_{L}}=\frac{\sum_{i=1}^{N}\left(\eta_{L}^{i}-\bar{\eta}_{L}\right)^{3}}{(N-1) \sigma^{3}}$	HARDskew

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\gamma_{2}^{\eta_{L}}$	Kurtosis of the local hardness distribution	$\gamma_{2}^{\eta_{L}}=\frac{\sum_{i=1}^{N}\left(\eta_{L}^{i}-\bar{\eta}_{L}\right)^{4}}{(N-1) \sigma^{4}}-3$	HARDkurt
$\int_{\eta_{L}}$	Integrated local hardness over the surface	$\int_{\eta_{L}}=\sum_{i=1}^{N} \eta_{L}^{i} a_{i}$	HARDint
$F_{N}^{\text {max }}$	Maximum value of the electrostatic field normal to the surface		FNmax
$F_{N}^{\text {min }}$	Minimum value of the field normal to the surface		FNmin
$\overline{F_{N}}$	Mean value of the field normal to the surface	$\overline{F_{N}}=\frac{1}{N} \sum_{i=1}^{N} \chi_{L}^{i}$	FNmean
σ_{F}^{2}	Variance in field normal to the surface	$\sigma_{F}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[F_{N}^{i}-\overline{F_{N}}\right]^{2}$	FNvartot
σ_{F+}^{2}	Variance in the field normal to the surface for all positive values	$\sigma_{F+}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left[F_{N}^{i+}-\overline{F_{N}^{+}}\right]^{2}$	FNvar+
σ_{F-}^{2}	Variance in the field normal to the surface for all negative values	$\sigma_{F-}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[F_{N}^{i-}-\overline{F_{N}^{-}}\right]^{2}$	FNvar-
v_{F}	Normal field balance parameter	$v_{F}=\frac{\sigma_{F+}^{2} \cdot \sigma_{F-}^{2}}{\left[\sigma_{F}^{2}\right]^{2}}$	FNbal
$\gamma_{1}^{F_{N}}$	Skewness of the field normal to the surface	$\gamma_{1}^{F_{N}}=\frac{\sum_{i=1}^{N}\left(F_{N}^{i}-\bar{F}_{N}\right)^{3}}{(N-1) \sigma^{3}}$	FNskew
$\gamma_{2}^{F_{N}}$	Kurtosis of the field normal to the surface	$\gamma_{2}^{F_{N}}=\frac{\sum_{i=1}^{N}\left(F_{N}^{i}-\bar{F}_{N}\right)^{4}}{(N-1) \sigma^{4}}-3$	FNkurt
$\int_{F_{N}}$	Integrated field normal to the surface over the surface	$\int_{F_{N}}=\sum_{i=1}^{N} F_{N}^{i} a_{i}$	FNint
$\int_{F_{N}}^{+}$	Integrated field normal to the surface over the surface for all positive values	$\int_{F_{N}}^{+}=\sum_{i=1}^{N} F_{N}^{i} a_{i}$ if $F_{N}^{i} \geq 0$	FN+
$\int_{F_{N}}^{-}$	Integrated field normal to the surface over the surface for all negative values	$\int_{F_{N}}^{-}=\sum_{i=1}^{N} F_{N}^{i} a_{i}$ if $F_{N}^{i}<0$	FN-
$\int_{\left\|F_{F_{N}}\right\|}$	Integrated absolute field normal to the surface over the surface	$\int_{F_{N}}=\sum_{i=1}^{N}\left\|F_{N}^{i}\right\| a_{i}$	FNabs

Descriptor	Description Additionally if the	Formula/ Reference nnon Entropy is calculat	Symbol in CSV file
$H_{i n}^{\text {max }}$	Maximum value of the internal Shannon Entropy		SHANImax
$H_{i n}^{\text {min }}$	Minimum value of the internal Shannon Entropy		SHANImin
$\overline{H_{i n}}$	Mean value of the internal Shannon Entropy	$\overline{H_{i n}}=\frac{1}{N} \sum_{i=1}^{N} H_{i n}^{i}$	SHANIbar
$\sigma_{H_{i w}}^{2}$	Variance in the internal Shannon Entropy	$\sigma_{H_{i n}}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[H_{i n}^{i}-\overline{H_{i n}}\right]^{2}$	SHANIvar
$\int_{H_{i n}}$	Integrated internal Shannon Entropy over the surface	$\int_{H_{i n}}=\sum_{i=1}^{N} H_{i n}^{i} a_{i}$	SHANItot
And if the external Shannon Entropy is available			
$H_{e x}^{\text {max }}$	Maximum value of the external Shannon Entropy		SHANEmax
$H_{e x}^{\text {min }}$	Minimum value of the external Shannon Entropy		SHANEmin
$\overline{H_{e x}}$	Mean value of the external Shannon Entropy	$\overline{H_{e x}}=\frac{1}{N} \sum_{i=1}^{N} H_{e x}^{i}$	SHANEbar
$\sigma_{H_{\alpha x}}^{2}$	Variance in the external Shannon Entropy	$\sigma_{H_{e x}}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[H_{e x}^{i}-\overline{H_{e x}}\right]^{2}$	SHANEvar
$\int_{H_{e x}}$	Integrated internal Shannon Entropy over the surface	$\int_{H_{e x}}=\sum_{i=1}^{N} H_{e x}^{i} a_{i}$	SHANE tot

1.10 Surface-integral models (polynomial version)

The polynomial surface-integral models that can be calculated by ParaSurf ${ }^{\text {r" }}$ are defined [10] using the expression

$$
\begin{equation*}
P=\sum_{i=1}^{n t r i} f\left(V^{i}, I E_{L}^{i}, E A_{L}^{i}, \alpha_{L}^{i}, \eta_{L}^{i}\right) \cdot A^{i} \tag{10}
\end{equation*}
$$

where P is the target property, usually a free energy, f is a polynomial function of the electrostatic potential V, the local ionization energy, $I E_{L}$, the local electron affinity, $E A_{L}$, the local polarizability, α_{L} and the local hardness, $\eta_{L} . A^{i}$ is the area of the surface triangle i.

The molecular property P is printed to the output file and to the <filename>_p.sdf ParaSurf ${ }^{\text {ma }}$ output SD-file. The individual values of the function f are added to the list of local properties written for each surface point to the .psf file if the surface details are output.

The surface-integral models themselves are not implemented directly in ParaSurf ${ }^{\text {T" }}$, but are read in general form from the SIM file, whose format is given in 3.9. Thus, the users' own surface-integral models can be added to ParaSurf ${ }^{\text {t". }}$. Data for generating surface-integral models can be derived simply from the .psf surface output for a normal ParaSurf" ${ }^{\text {t" }}$ run. Note that the program options given in the SIM file must be the same for all the models included in the file and that they override conflicting command-line options.

1.11 Binned surface-integral models

A more recent type of SIM model, binned SIM models, [13] is now implemented in ParaSurf' $11^{\text {T"M }}$ for the negative logarithm of the water-octanol partition constant, logPow. These models divide the surface into bins according to the values of the local properties and use the total surface area assigned to each bin as descriptors for multiple linear regression models. These models have been implemented for marching cube surfaces using either the isodensity or solvent-excluded surfaces and for the AM1, AM1*, MNDO, MNDO/d, PM3 and PM6 Hamiltonians. In contrast to polynomial SIM models, they are encoded in the program and are output under the heading "ParaSurf ${ }^{\text {m" }}$ ADMET Profiler". These $\log \mathrm{P}_{\text {ow }}$ models are available for the MNDO, AM1, PM3, MNDO/d, Am1* and PM6 Hamiltonians. The models use "conformationally averaged" structures within a standard calculational protocol in which the initial 3D structure is produced by CORINA [35] as the starting geometry for the semiempirical geometry optimization and uses only this one conformation to predict \log Pow for the compound. These models were trained with all verified values contained in the LogKOW dataset [36] and are those denoted "single conformation" trained with the "full" dataset in the original literature. [12]

Table 2: The 28 local properties and products thereof used to construct binned area descriptors.

$M E P$	$I E_{L}$	$E A_{L}$	α_{L} a	F_{N}	η_{L}	χ_{L}
	$M E P \times I E_{L}$	$M E P \times E A_{L}$	$M E P \times \alpha_{L}$	$M E P \times F_{N}$	$M E P \times \eta_{L}$	$M E P \times \chi_{L}$
		$I E_{L} \times E A_{L}$	$I E_{L} \times \alpha_{L}$	$I E_{L} \times F_{N}$	$I E_{L} \times \eta_{L}$	$I E_{L} \times \chi_{L}$
			$E A_{L} \times \alpha_{L}$	$E A_{L} \times F_{N}$	$E A_{L} \times \eta_{L}$	$E A_{L} \times \chi_{L}$
				$\alpha_{L} \times F_{N}$	$\alpha_{L} \times \eta_{L}$	$\alpha_{L} \times \chi_{L}$
					$F_{N} \times \eta_{L}$	$F_{N} \times \chi_{L}$
					$\eta_{L} \times \chi_{L}$	

Local hydrophobicities and logPow models are available for the following combinations of Hamiltonians, surfaces and contours. The three letter model code is used to write the local hydrophobicity to the output .vmp file or to specify that the descriptors for the model are written out.

Table 3: Local hydrophobicity models and their model codes (all models use the single CORINA-derived conformations and are trained with the "full" dataset. [12]

Hamiltonian	
AM1	Model code
AM1*	LP1
PM3	LP2
MNDO	LP3
MNDO/d	LP5
PM6	LP6

1.12 Spherical harmonic "hybrids"

Once the molecular shape or a local property have been fitted to a spherical-harmonic expansion, [15] the shape or property can be described succinctly as a series of spherical-harmonic "hybridization" coefficients analogous to the concept of hybrid atomic orbitals. Thus, for each value of l in equation (1) the "hybridization" coefficient H_{l} is given by:

$$
\begin{equation*}
H_{l}=\sum_{i=-m}^{m}\left(c_{l}^{m}\right)^{2} \tag{11}
\end{equation*}
$$

The hybridization coefficients H_{l} can be used as additional descriptors for fast QSPR screening.

1.13 Descriptors and moments based on polynomial surface-integral models

ParaSurf ${ }^{T M}$ uses local properties defined in a surface-integral model (SIM, see 1.10) to calculate descriptors analogous to those listed in Table 1. Additionally, "dipolar moments" of the local property are calculated. These are gauge-independent moments calculated by first shifting values of the local property so that their sum is zero and then calculating moments according to

$$
\begin{equation*}
\mu=\sum_{i=1}^{n t r i} P_{i} \mathbf{r}_{\mathbf{i}} \tag{12}
\end{equation*}
$$

where μ is the dipolar moment, P_{i} the value of the local property i situated at position $\boldsymbol{r}_{\boldsymbol{i}}$.
The output for these properties derived from a SIM for $\log \mathrm{P}_{\text {ow }}$ is shown below:

```
Descriptors calculated for logP:
    Dipolar moment x: -549.2 y: -247.9 %: % % < 937.0
    Most positive value : 1.407
    Most negative value : 0.8325E-01
    Range : 1.324
    Mean : 0.1874
    Mean positive : 0.1874
    Mean negative : 0.000
    Total variance : 0.2376E-01
    Positive variance : 0.2376E-01
    Negative variance : 0.000
    Balance parameter : 0.000
    Balance*variance : 0.000
```

The values of these descriptors are often useful for deriving models directly related to the property modelled by the SIM. Note that no units are given in the output because they depend on the property modelled by the SIM.

1.14 Shannon entropy

The information content at the surface of the molecule can be defined based on the distribution of the four local properties over the surface using an approach analogous to that introduced by Shannon. [37]

Shannon defined the Shannon entropy, H, which corresponds to the amount of information (in bits) as

$$
\begin{equation*}
H=-\sum_{i=1}^{n} p_{i} \log _{2}\left(p_{i}\right) \tag{13}
\end{equation*}
$$

where n is the number of possible characters and p_{i} is the probability that character i will occur. Note that, importantly, this definition of the amount of information is local (i.e. it only depends on the value of the probability of character i).

For a continuous property, X, equation (1) becomes

$$
\begin{equation*}
H=-\int_{-\infty}^{\infty} p(X) \log _{2} p(X) d X \tag{14}
\end{equation*}
$$

If we now assume that the Shannon entropy at a point in space near a molecule is defined by the values of the four continuous local properties described above, we obtain

$$
\begin{equation*}
H=-\iiint \int p(V, I, E, \alpha) \log _{2}(V, I, E, \alpha) d V d I d E d \alpha \tag{15}
\end{equation*}
$$

where $p(V, I, E, \alpha)$ is the probability of finding the values V, I, E and α. However, we can simplify this expression because the four properties are essentially independent of each other, [8, 9] so that we can write

$$
\begin{align*}
& H=-\int p(V) \log _{2} p(V) d V-\int p(I) \log _{2} p(I) d I \\
& -\int p(E) \log _{2} p(E) d E-\int p(\alpha) \log _{2} p(\alpha) d \alpha \tag{16}
\end{align*}
$$

Transferring this definition to a molecule for which a triangulated surface of k triangles, where triangle i has area A_{i} and average values of the four local properties V_{i}, I_{i}, E_{i} and α_{i} we obtain

$$
\begin{equation*}
H=-\sum_{i=1}^{k}\left[p\left(V_{i}\right) \log _{2} p\left(V_{i}\right)+p\left(I_{i}\right) \log _{2} p\left(I_{i}\right)+p\left(E_{i}\right) \log _{2} p\left(E_{i}\right)+p\left(\alpha_{i}\right) \log _{2} p\left(\alpha_{i}\right)\right] \cdot A_{i} \tag{17}
\end{equation*}
$$

where $p\left(X_{i}\right)$ is the probability that the value X_{i} of the property X, where X may be V, I, E or α, will occur.

ParaSurf ${ }^{\text {m" }}$ offers two alternatives as sources for the probabilities $p\left(X_{i}\right)$. The first, known as the "external" Shannon entropy, is to use probabilities taken from an external dataset and defined in a separate statistics file. The default "external" statistics file is called bins.txt and is read from the ParaSurf ${ }^{\text {T" }}$ root directory. The statistics defined in bins.txt were derived from AM1 calculations of all the bound ligands defined in the PDBbind database [38] in their correct protonation states and at geometries obtained by optimizing with AM1 starting from the bound conformation. [39]

Alternatively, the user can define a custom "external" statistics file using the ParaSurf ${ }^{\text {m" }}$ module binner (available free of charge for ParaSurf" users). The "external" Shannon entropy is useful for relating a series of molecules to each other, but is sensitive, for instance, to the total charge of the molecule.

The "internal" Shannon entropy is calculated using probabilities determined from the surface properties of the molecule itself, and therefore corresponds more closely to Shannon's classical definition than the "external" Shannon entropy and the probabilities used are individual for each molecule. The "internal" Shannon entropy can be considered to represent the information content of the molecule. The properties of the two types of Shannon entropy will be described in a forthcoming paper.

1.15 Surface autocorrelations

Gasteiger et al. [39] introduced the concept of surface autocorrelations as powerful descriptions of molecular binding properties for quantitative structure-activity relationships (QSARs). In ParaSurf ${ }^{\text {TM }}$, autocorrelations $A(R)$ are now defined as:

$$
\begin{equation*}
A(R)=\frac{1}{n t r i} \sum_{i=1}^{n t r i} \sum_{j=i+1}^{n t r i} \omega_{i j} \mathrm{e}^{-\sigma\left(R-r_{i j}\right)^{2}} \tag{18}
\end{equation*}
$$

where $r_{i j}$ is the distance between surface points i and j and $\omega_{i j}$ is a function of one or more local properties at the points i and j and $\delta_{i j}$ is 1.0 if $r_{i j}$ is inside the bin centred on R and zero otherwise. Note that this is a different definition of the autocorrelation function to that used in earlier versions of ParaSurf ${ }^{\text {TM }}$. Also, because the new algorithm for calculating the autocorrelations is very fast, all surface points are used, rather than sampling 10% as earlier.

Seven different autocorrelation functions are calculated by ParaSurf ${ }^{\text {TM }}$. These are:

Shape autocorrelation	$\omega_{\mathrm{ij}}=1.0$	
MEP autocorrelation	$\omega_{i j}=V_{i} \times V_{j}$	$\left(\mathrm{~V}_{\mathrm{i}}>0\right.$ and $\left.\mathrm{V}_{\mathrm{j}}>0\right)$
Plus-plus MEP autocorrelation	$\omega_{\mathrm{ij}}=\mathrm{V}_{\mathrm{i}} \times \mathrm{V}_{\mathrm{j}}$	$\left(\mathrm{V}_{\mathrm{i}}<0\right.$ or $\left.\mathrm{V}_{\mathrm{j}}<0\right)$
Minus-minus MEP autocorrelation	$\omega_{\mathrm{ij}}=0.0$	$\left(\mathrm{~V}_{\mathrm{i}}<0\right.$ and $\left.\mathrm{V}_{\mathrm{i}}<0\right)$
Plus-minus MEP autocorrelation	$\omega_{\mathrm{i}}=-\mathrm{V}_{\mathrm{i}} \times \mathrm{V}_{\mathrm{j}}$	$\left(\mathrm{V}_{\mathrm{i}} \times \mathrm{V}_{\mathrm{j}}<0\right)$
	$\omega_{\mathrm{ij}}=0.0$	$\left(\mathrm{~V}_{\mathrm{i}} \times \mathrm{V}_{\mathrm{j}}>0\right)$
Local ionization energy autocorrelation	$\omega_{i j}=I E_{L}^{i} \times I E_{L}^{j}$	
Local electron affinity autocorrelation	$\omega_{i j}=E A_{L}^{i} \times E A_{L}^{j}$	
Local polarizability autocorrelation	$\omega_{i j}=\alpha_{L}^{i} \times \alpha_{L}^{j}$	

Generally, the shape autocorrelation and that based on the local polarizability correlate strongly with each other. The MEP correlation is the sum of its three components (plus-plus, plus-minus and minusminus). However the three components enable us to distinguish between ++ and - pairs of surface points, which both give a positive contribution to the autocorrelation function.

ParaSurf ${ }^{\text {TM }}$ calculates autocorrelations as vectors of $A(R)$ values 64 elements long starting at an R value of $0.0 \AA$ and increasing in bins of width $0.2 \AA$ up to a maximum value of $12.8 \AA$). Figure 9 shows the eight autocorrelation functions for trimethoprim calculated with AM1.

Figure 9 The eight autocorrelation functions calculated using the AM1 Hamiltonian for captopril.

The command-line argument autocorr=<filename> requests that similarities in the autocorrelation functions with the molecule described in <filename>, where <filename> must be a ParaSurf.sdf output file are calculated and written out. The floating-point Tanimoto similarities S are defined as:

$$
\begin{equation*}
S=\frac{\sum_{i=1}^{n b i n s} A_{A}^{i} A_{B}^{i}}{\sum_{i=1}^{n b i n s}\left(A_{A}^{i}\right)^{2}+\sum_{i=1}^{n b i n s}\left(A_{A}^{i}\right)^{2}-\sum_{i=1}^{n b i n s} A_{A}^{i} A_{B}^{i}} \tag{19}
\end{equation*}
$$

where A_{A}^{i} is the value of the autocorrelation function for molecule A and bin i etc. Note that although the normal range for a Tanimoto coefficient is from zero to one, marginally negative values may occur for the local ionisation energy or electron affinity.

These similarities are calculated for the entire range of each of the eight autocorrelation functions. These individual similarities can be written to a table file (see 3.12) and are printed in the output file (see 3.4.4).

1.16 Standard Rotationally Invariant Fingerprints (RIFs)

Mavridis et al. [40] introduced standard rotationally invariant fingerprints (RIFs) based on the spherical-harmonic hybridization coefficients defined above. These fingerprints provide a detailed description of the molecular shape, electrostatics, donor/acceptor properties and polarizability as a standard series of 54 floating point numbers.

1.17 Maxima and Minima of the Local Properties

Jakobi et al. [41] have described the calculation and use of the most significant maxima and minima of the local properties on the surface of the molecule. These points were used in the ParaFrag procedure to detect scaffold hops with high similarity and can be viewed as pharmacophore points.

1.18 Atom-centred descriptors

Hennemann et al. [42, 43] have used atom-centred quantities calculated by ParaSurf ${ }^{\text {Tw }}$ as descriptors in order to calculate the strengths of hydrogen bonds [42] and for chemical reactivity models [43]. These descriptors (based on conventional solvent-accessible surface areas [44] using Bondi van der Waals radii [45] and a default solvent radius of $1.4 \AA$), C-H bond orders for hydrogen atoms, the constitution of the localized lone-pair orbitals on nitrogen atoms ands the π-charges of carbon atoms in conjugated π-systems. These descriptors are now output by ParaSurf' $11^{T m}$.

1.19 Fragment analysis

ParaSurf' $11^{\text {TM }}$ can divide the input molecule into fragments (which must be defined in the input SDF file) and perform a full surface analysis for each fragment. This option and its output will be described in detail below.

2 PROGRAM OPTIONS

2.1 Command-line options

ParaSurf ${ }^{\text {T"M }}$ program options are given as command-line arguments. Arguments are separated by blanks, so that no single argument may contain a blank character. Arguments may be written in any combination of upper and lower case. The options are:

rsol=	n.nn	A solvent-probe radius of $\mathrm{n} . \mathrm{nn} \AA \AA$ is used for calculating the solvent-excluded or solvent-accessible surface (default=1.0, allowed range is from 0.0 to $2.0 \AA$)
mesh=	n.nn	The mesh size used to triangulate the surface is set to $\mathrm{n} . \mathrm{nn}$ \AA (default value $=0.2 \AA$, allowed range is from 0.1 to 1.0 A)
estat=	naopc multi	Use NAO-PC electrostatics Use multipole electrostatics (default)
psf=	on off	Write .psf surface file Do not write .psf surface file (default)
asd=	on off	Write anonymous SD (. asd) file Do not write .asd file (default)
vmp=	on off mep iel eal pol har eng anr fnm sha <MOD>	Write .vmp file for debugging. Map the MEP onto the surface Do not write .vmp file (default) Write .vmp file for debugging. Map the MEP onto the surface Write .vmp file for debugging. Map $I E_{L}$ onto the surface Write . vmp file for debugging. Map $E A_{L}$ onto the surface Write . vmp file for debugging. Map α_{L} onto the surface Write . vmp file for debugging. Map $\eta_{\llcorner }$onto the surface Write . vmp file for debugging. Map $\chi\llcorner$ onto the surface Write . vmp file for debugging. Map the number of the atom assigned to the surface element onto the surface Write . vmp file for debugging. Map F_{N} onto the surface Write . vmp file for debugging. Map the Shannon entropy onto the surface Write . vmp file for debugging. Map the local property with the three-character designator <MOD> defined in the SIM file onto the surface
vmpfrag=	on off all	Equivalent to vmp=, but writes separate . vmp files for each fragment with only its atoms and the MEP projected onto the fragment surface. The files are named <filename><fragmentname>.vmp, where <fragmentname> is the name assigned to the fragment in the input SDF file. No fragment .vmp files will be written. As for on, except that the atoms for the entire molecule are written to the .vmp files with the surface for the fragment only.
grid=	<filename> auto	Read the Cartesian coordinates at which to calculate a grid of the four properties (MEP, $\left.I E_{L}, E A_{L}, \alpha_{L}\right)$. See 3.8.1 ParaSurf ${ }^{\text {Tw }}$ calculates an automatic grid (see 3.8.2)
lattice=	$n . n n$	Sets the lattice spacing for the grid=auto option (see 3.8.2)
sim=	<filename>	One or more surface-integral models will be read from the file <filename>. sim in the ParaSurf ${ }^{\text {m" }}$ root directory. <filename> can be upper or lower case or any mixture but must be exactly three characters long.

center= or centre=	on off	The atomic and surface coordinates in the .psfoutput file will be centred for calculations that use spherical-harmonic fitting. Note that this means that the atomic coordinates in the SDF-output file (which are the input coordinates) will be different to those in the PSF-output file. This option is default. The atomic and surface coordinates in the .psf output file will not be centred and will correspond to the input coordinates and those in the SDF-output file.
shannon	=<filename>	Requests that Shannon entropies (both internal and external) be calculated. If no statistics file <filename> is given, the default file (bins.txt in the ParaSurf ${ }^{\text {T" }}$ Root directory) will be used. If a statistics file is given that either does not exist, contains errors or is derived from ParaSurf ${ }^{\text {m" }}$ runs using different options to the current one, only the internal Shannon entropy is calculated.
autocorr	=<filename>	Requests that the surface autocorrelation functions be calculated and written to the output . sdf file. <filename> must be a ParaSurf ${ }^{\text {TM }}$ output . sdf file that contains the autocorrelation functions. In this case, similarities between the two molecules will be calculated and printed (see also aclist=).
table=	<filename>	An ASCII table of the ParaSurf ${ }^{m m}$ descriptors will be written to the file <filename>. If <filename> exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created.
aclist=	<filename>	An ASCII table of the calculated autocorrelations will be written to the file <filename>. A total of 448 variables (7 properties in 64 bins each) are written for each molecule.
aslist=	<filename>	An ASCII table of the calculated autocorrelation similarities will be written to the file <filename>. If <filename> exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created.
riflist=	<filename>	An ASCII table of the calculated a standard rotationally invariant fingerprint (RIF) will be written to the file <filename>. If <filename> exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created.
translate	=n.nn	Requests that ParaSurf ${ }^{\text {t" }}$ performs low-resolution sphericalharmonic fits using translated centres at ($+\mathrm{n} . \mathrm{nn}, 0,0$), ($n . n n, 0,0),(0,+n . n n, 0),(0,-n . n n, 0),(0,0,+n . n n)$ and $(0,0,-n . n n)$ relative to the original centre. The default value of $n . n n$ is $0.5 \AA$. This value is obtained if translate is used alone. The maximum value of $n . n n$ allowed is $1.0 \AA$. The translate option will be needed for later versions of ParaFit ${ }^{\text {TM }}$ that allow translation of the molecule when overlaying.

translate2	$=n \cdot n n$	Requests that ParaSurf ${ }^{\text {TM }}$ performs a more detailed translation scan with low-resolution spherical-harmonic fits using translated centres at $(+n . n n, 0,0),(+2 n . n n, 0,0),(-$ $n . n n, 0,0),(-2 n . n n, 0,0),(0,+n . n n, 0)$, $(0,+2 n \cdot n n, 0),(0,-n \cdot n n, 0),(0,-2 n . n n, 0)$, $(0,0,+n . n n),(0,0,+2 n . n n),(0,0,-n . n n)$ and $(0,0,-2 n . n n)$ relative to the original centre. The default value of $n . n n$ is $0.25 \AA$. This value is obtained if translate 2 is used alone. The maximum value of $n . n n$ allowed is $0.5 \AA$. The translate 2 option will be needed for later versions of ParaFit ${ }^{\text {TM }}$ that allow translation of the molecule when overlaying.
fragments		Perform a fragment analysis. The fragments must be defined in the input SDF file
desfile=	<filename>	Write the binned SIM descriptors to the file <filename>. If <filename> exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created. The descriptors are written as a comma-separated table with headers. Note that desmodel must also be defined.
desmodel=	<code>	The bin definitions for the model denoted by <code> will be used to calculate the descriptors for the table of binned SIM descriptors. The possible values of <code> and their definitions are given in Table 2.
-version		Must be the first argument. Requests that ParaSurf ${ }^{\text {TMM }}$ prints the version number to the standard output channel and then stops without performing a calculation.
eal09		Do not use the selection procedure for virtual orbitals [26] when calculating the local electron affinity. This option provides continuity with earlier versions of ParaSurf ${ }^{\text {TM }}$

Examples:
parasurf test surf=wrap fit=sphh iso=0.03 psf=on estat=naopc
Use the input file test_v.sdf, test.sdf or test_m.sdf to calculate a shrink-wrap surface with an isodensity value of $0.03 \mathrm{e}^{-} \AA^{-3}$, perform a spherical-harmonic fit, use NAO-PC electrostatics and write the spherical-harmonic coefficients to test_P.sdf and the entire surface to test_P.psf.

parasurf test surf=cube fit=none

Use the file test_v.sdf, test.sdf or test_m.sdf as input to perform a marching-cube surface determination without fitting and to calculate the descriptor set.

2.2 Options defined in the input SDF-file

2.2.1 Defining the centre for spherical-harmonic fits

The automatic determination of the molecular centre for spherical-harmonic fitting can be overridden by adding a field to the Input (usually VAMP) SDF-file with the tag:

<SPHH CENTER>

The centre can be defined using Cartesian coordinates using an input line (immediately after the SPHH_CENTER tag) of the format:
Cartesian
$\mathbf{X . X X}$
Y. YY
z. Z Z
where $\mathbf{x . x x}, y \cdot y y$ and $z . z z$ are the x, y, and z-coordinates, respectively. The capitalization of "Cartesian" is required.

Alternatively, a list of atoms can be given using the format

```
Atoms n1 n2 n3 n4 n5 n6 ....
```

where $n 1$ etc. are the numbers of the atoms to be used to calculate the centre of gravity. The capitalization of "Atoms" is required and the list of atoms is limited to one line.

2.2.2 Defining fragments

Molecular fragments can be defined in the input SDF file and fragments calculations requested using the fragments options, for instance

```
parasurf test surf=cube fragments
```

Figure 10 shows a sample <fragment> block from an SDF input file.

```
> <FRAGMENTS>
Start fragment
phenyl
3
End fragment
Start fragment
methoxy1
1 2 22 23 24
End fragment
Start fragment
methoxy2
```



```
End fragment
```

Figure 10a A sample <FRAGMENTS> input block.

```
Start fragment
methoxy3
    20}321\quad37\quad38\quad3
End fragment
Start fragment
methylene
    6 26 27
End fragment
Start fragment
thymine
lllllllllllllllll
End fragment
Start fragment
everybody
    1
End fragment
> <END_FRAGMENTS>
```

Figure 10b A sample <FRAGMENTS> input block.

The first line after each "Start fragment" line (note the upper and lower case, which are necessary) defines the name given to the fragment. This is followed by the numbers of the atoms that make up the fragment (20i4, fixed format). Note that the fragments need not be mutually exclusive. The fragment "everybody" in the above example, for instance is the entire molecule. The fragment-definition block begins with

> <ERAGMENTS>

and ends with

> <END_FRAGMENTS>

tags.

Figure 11 shows the input molecule and the fragments.

Figure 11 The fragments defined in the SDF input example

In a FRAGMENTS run, ParaSurf ${ }^{\text {TM }}$ first performs a calculation for the entire molecule and then analyses the molecular surface according to the standard ParaSurf ${ }^{T M}$ technique used to assign surface triangles to individual atoms. The output for the phenyl fragment is shown in Figure 12. A similar output section is printed for each fragment. The results and the descriptors for each fragment are taken from the surface for the whole molecule and therefore refer to the fragment (both its electronic properties and the area of its surface) within the context of the molecule itself. The coordinates given for the maxima and minima of the local properties refer to the input geometry of the entire molecule.

Figure 12 ParaSurf $11^{\text {TM }}$ output for the phenyl fragment defined above.

The individual surfaces of the fragments are shown in Figure 13.

Figure 13 Surfaces calculated for the individual fragments, colour coded according to the MEP in $\mathrm{kcal} \mathrm{mol}^{-1}$. The fragments (clockwise from the top right) are methoxy1, methoxy2, methoxy3, thymine, phenyl and methylene.

3 INPUT AND OUTPUT FILES

ParaSurf ${ }^{\text {TM }}$ uses the following files for input and output:

Table 5: \quad ParaSurf'" input and output files

File	Name	$\begin{array}{l}\text { <filename>_v.sdf } \\ \text { or } \\ \text { <filename>.sdf }\end{array}$
Input	$\begin{array}{l}\text { VAMP .sdf file output. VAMP must be run with the ALLVECT } \\ \text { option to be able to calculate all the properties. The VAMP } \\ \text { version used must be able to calculate AO-polarisabilities. }\end{array}$	
(if available) or		
<filename>_m.sdf		

Mopac 6 . sdf file. It is strongly recommended to use the EF

option for geometry optimizations in Mopac.\end{array}\right\}\)

3.1 The VAMP .sdf file as input

VAMP .sdf files, an extension of the MDL .sdf file format, [46] are the primary communication channel between VAMP and ParaSurf ${ }^{\text {TM }}$. The atomic coordinates and bond definitions are given in the MDL format as shown in Figure 14.The remaining fields are indicated by tags with the form:

<FIELD NAME>

FIELD_NAME is a predefined text tag used to locate the relevant data within the .sdf file.
Only the important fields for a ParaSurf ${ }^{\text {Tw }}$ calculation will be described here:

```
1-Bromo-3,5-difluorobenzene
OMVAMP81A04250313563D 1 0.00000 0.00000 0
    12 12 0 0 0 0 1 V2000
    -2.6274 0.2410 0.0003 F
    -1.2738 0.2410 0.0003 C
    -0.5810 1.4623 0.0003 C
        0.8231 1.4389 0.0003 C
        1.5096 2.6055 0.0004 F
        1.5266 0.2198 0.0001 C
        0.8142 -0.9793 0.0001 C
        1.7431 -2.6055 -0.0004 Br
    -0.5805 -0.9840 0.0002 C
    -1.1264 2.4167 -0.0003 H
        2.6274 0.2339 0.0003 H
        -1.1515 -1.9253 0.0001 H
        2 1
        34
        4 4
        5 1
        64
        7 4
        8 1
        9 4
        9 4
        10 1
        11 1
    9 12 1
M END
```

Figure 14 The headers and titles, atomic coordinates and bond definitions from a VAMP .sdf file. The format follows the MDL definition. [28].

<HAMILTONIAN>

The Hamiltonian field defines the semiempirical Hamiltonian (model and parameters) used for the calculation. The Hamiltonian must be defined for ParaSurf ${ }^{\text {TM }}$ to be able to calculate the electrostatics and the local polarisabilities. NAO-PC electrostatics and the local polarizability are not available for all methods. Quite generally, the multipole electrostatics model is to be preferred over the NAO-PC model, which can only be used if the VAMP .sdf file contains a block with the tag:

<NAO-PC>

NAO-PCs cannot be calculated for methods with d-orbitals. The local polarizability calculation has not yet been extended to these methods, but will be in a future release.

The following table gives an overview of the methods and their limitations:
Table 6: Hamiltonians and the available electrostatic and polarizability models.

Hamiltonian		Electrostatics Neference		Local PAO-PC
MNDO	$[20]$	YES	YES	YES
AM1	$[21]$	YES	YES	YES
PM3	$[22]$	YES	YES	YES
MNDO/c	$[47]$	YES	YES	NO
MNDO/d	$[23]$	NO	YES	NO
AM1*	$[24]$	NO	YES	NO

<VAMPBASICS>

The VAMPBASICS block contains the following quantities (FORTRAN format 6f13.6):

Heat of Formation	$\mathrm{kcal} \mathrm{mol}^{-1}$
HOMO energy	eV
LUMO energy	eV
Dipole moment	
x-component	Debye
y-component	Debye
z-component	Debye

<TOTAL COULSON CHARGE>

The total charge of the molecule.

<DENSITY MATRIX ELEMENTS>

The DENSITY MATRIX ELEMENTS block contains the one-atom blocks of the density matrix for the non-hydrogen atoms. For an $s p$-atom, there are ten elements, for an spd-atom 45. The squares of the diagonal elements for hydrogen atoms are included in the <CHARGE ON HYDROGENS> block that follows the density matrix. The density-matrix elements are used in ParaSurf ${ }^{\text {TM }}$ to calculate the local properties and are essential.

<ORBITAL VECTORS>

The ORBITAL VECTORS block contains the MO-eigenvectors and related information and is essential for calculating the local properties. VAMP must be run with the keyword ALLVECT in order to write all the MO vectors to the SDF file.

The entire SDF input file is echoed to the <filename>_p.sdf output file and the properties calculated by ParaSurf ${ }^{\text {f" }}$ are added in additional blocks at the end.

3.1.1 Multi-structure SD-files

ParaSurf" ${ }^{\text {m" }}$ can read SD-files containing more than one molecule (e.g. those produced by the VAMP-QSAR model engine) and process them in one run. The command-line arguments apply to each molecule in the SD-file and the same semiempirical Hamiltonian must be used for each molecule or an error message will be printed and the program terminated.

As part of this enhancement, ParaSurf ${ }^{\text {m" }}$ can use SD-files that do not contain the one-atom blocks of the density matrix explicitly. Thus, SD-files that only contain the molecular-orbital Eigenvectors and Eigenvalues give full ParaSurf ${ }^{\text {T"I }}$ functionality within the previous restrictions that:

- Polarisabilities are not yet available for Hamiltonians that use d-orbitals (MNDO/d and AM1*).
- NAO-PC electrostatics are only available if the NAO-PCs are present in the SD-file. Multipole electrostatics are available for all Hamiltonians.

The output SD-file written by ParaSurf ${ }^{\text {Tw }}$ also contains multiple molecules as in the input file. Other ParaSurf ${ }^{\text {f" }}$ output files (.asd, .vmp etc.) are also concatenated.

Multiple SD-files can be used with a SIM file exactly as single molecules.

3.2 The Cepos MOPAC 6.sdf file as input

Cepos Mopac 6 writes an .sdf file containing the above blocks with the exception that the MOPACBASICS block replaces VAMPBASICS. No additional keywords are required to request the correct .sdf output for ParaSurf ${ }^{\text {m" }}$.

3.3 The Vhamil.par file

The file Vhamil.par is used by VAMP to define the available Hamiltonians and elements and supply the parameters. This file is also used by ParaSurf ${ }^{\text {r"I }}$ for the same purpose. A Vhamil.par file for standard Hamiltonians and elements is supplied with the ParaSurf ${ }^{\text {T" }}$ program. In order to be sure that all Hamiltonians and elements available to VAMP can also be handled by ParaSurf ${ }^{\text {m" }}$, however, the Vhamil.par file from the VAMP executable directory should be copied into the ParaSurf ${ }^{\text {TM }}$ executable directory.

3.4 The ParaSurf ${ }^{\text {Tw }}$ output file

The ParaSurf" ${ }^{\text {m" }}$ output file provides the user with information about the calculation and the results. It is, however, not intended as the primary means of communication between ParaSurf ${ }^{m \times 1}$ and other programs. Thus, the essential information contained in the output file is also available from the ParaSurf ${ }^{\text {m" }}$ output .sdf file.

3.4.1 For a spherical-harmonic surface

Figure 15 shows the output for a calculation using the options surf=wrap fit=sphh translate for trimethoprim, 1.


```
<> ParaSurf'1 , Revision A1
<> Copyright (c) 2006,2007,2008,2009,2010,2011 Friedrich-Alexander-
    Universitaet Erlangen-Nuernberg and Cepos InSilico Ltd.
    All rights reserved.
<> Input = trimethoprim.sdf
<<>> Molecule 1 of 1 <<>>
<> Program options :
    Using shrink-wrap isocontour surface
    Fitting surface to spherical harmonics
    Translations for spherical-harmonic fits: 1 step of 0.5000 Angstrom in each direction.
    Using an isodensity surface contour
    Isodensity value = 0.2000E-04 electrons/Angstrom**3
    Triangulation mesh = 0.20 Angstrom
    Using multipole electrostatics
```

Figure 15: ParaSurf ${ }^{\text {T" }}$ output for trimethoprim, 1, using a spherical-harmonic surface.

<> AM1 calculation for	Trimethoprim		
<> Translated spherical-harmonic fits:			
$d x$	$d y$	$d z$	rmsd
0.0000	0.0000	0.0000	0.4034
0.5000	0.0000	0.0000	0.5684
-0.5000	0.0000	0.0000	0.5002
0.0000	0.5000	0.0000	0.5611
0.0000	-0.5000	0.0000	0.5193
0.0000	0.0000	0.5000	0.5689
0.0000	0.0000	-0.5000	0.4283

<> Fitting surface to spherical harmonics
<> Order (l) RMSD

0	1.92526847
1	1.96114689
2	1.55521125
3	1.10609483
4	0.93107676
5	0.70605297
6	0.63661488
7	0.57077524
8	0.52400109
9	0.50050583
0	0.47261493
1	0.44416316
2	0.41920775
3	0.40320743
4	0.39308983
5	0.38341761

<> Spherical harmonic fit for MEP:
<> Order (l) RMSD

0	11.06621848
1	11.02831889
2	8.63330698
3	6.86247364
4	5.49824707
5	4.58527334
6	4.17139337
7	3.45052537
8	3.12581239
9	2.77798689
10	2.36033975
11	2.07232627
12	1.90441930
13	1.72381187
14	1.64582625
15	1.46855812
16	1.27875373
17	1.07480393
18	0.93507876
19	0.88299081
20	0.82791747

```
    <> Spherical harmonic fit for IE(l):
    <> Order(l) RMSD
    056.96181478
1 50.08877418
    45.40744632
    43.50297274
    40.06772200
    35.49615651
    32.77544861
    26.87818719
    23.10705894
    19.60935653
    17.98417050
    16.21352138
    15.12917785
    14.62643122
    13.87383640
    13.44294950
    13.23244532
    12.62943635
    12.27106930
    12.27106930
    12.27106930
    <> Spherical harmonic fit for EA(l):
    <> Order(l) RMSD
    12.18668274
    11.86538321
    11.74571609
        9.50312285
        8.72650603
        7.28921579
        7.13957211
        6.79022442
        6.48006338
        6.02636118
        5.73169119
        5.46777405
        5.18598187
        4.51689005
        4.11336321
        3.92017066
        3.68134487
        3.60264328
        3.40103297
        3.23507723
        3.10515890
```



```
<> Descriptors :
```

Dipole moment Dipolar density Molecular pol. Molecular weight Globularity Total surface area Molecular volume

Most positive MEP
Most negative MEP
Mean +ve MEP
Mean -ve MEP
Mean MEP
MEP range
MEP +ve Variance
MEP -ve Variance
MEP total variance
MEP balance parameter
MEP balance*variance
MEP skewness
MEP kurtosis
Integral MEP

Maximum IE(l)
Minimum IE(l)
Mean IE (l)
IE(l) range
IE(l) variance
IE(l) skewness
IE(l) kurtosis
Integral IE(l)

Maximum EA(l)
Minimum EA(l)
Mean +ve EA(l)
Mean -ve EA(l)
Mean EA(l)
EA(l) range
EA(l) +ve variance
EA(l) -ve variance
EA(l) total variance
EA(l) skewness
EA(l) kurtosis
Integral EA(l)
EA(l) balance param. Fraction pos. EA(l)

Max. local Eneg.
Min. local Eneg. Mean local Eneg. Local Eneg. range Local Eneg. variance Local Eneg. skewness Local Eneg. kurtosis Integral local Eneg. :

Max. local hardness Min. local hardness Mean local hardness Local hard. range Local hard. variance Local hard. skewness Local hard. kurtosis Integral local Hard.

```
```

 1.2467 Debye
    ```
```

 1.2467 Debye
 0.1933E-02 Debye.Angstrom**-3
0.1933E-02 Debye.Angstrom**-3
128.5408 Angstrom**3
128.5408 Angstrom**3
290.32
290.32
0.7689
0.7689
469.51 Angstrom**2
469.51 Angstrom**2
644.94 Angstrom**3
644.94 Angstrom**3
16.80 kcal/mol
16.80 kcal/mol
-48.50 kcal/mol
-48.50 kcal/mol
5.59 kcal/mol
5.59 kcal/mol
-10.80 kcal/mol
-10.80 kcal/mol
-3.13 kcal/mol
-3.13 kcal/mol
65.30 kcal/mol
65.30 kcal/mol
10.80 (kcal/mol)**2
10.80 (kcal/mol)**2
94.38 (kcal/mol)**2
94.38 (kcal/mol)**2
105.18 (kcal/mol)**2
105.18 (kcal/mol)**2
0.0921
0.0921
9.6898 kcal/mol
9.6898 kcal/mol
-1.1813
-1.1813
1.3859
1.3859
-1166.52 kcal.Angstrom**2/mol
-1166.52 kcal.Angstrom**2/mol
671.20 kcal/mol
671.20 kcal/mol
391.05 kcal/mol
391.05 kcal/mol
475.70 kcal/mol
475.70 kcal/mol
280.15 kcal/mol
280.15 kcal/mol
3233.28 (kcal/mol)**2
3233.28 (kcal/mol)**2
0.6770
0.6770
-0.2281
-0.2281
9650.55 eV.Angstrom**2
9650.55 eV.Angstrom**2
-38.29 kcal/mol
-38.29 kcal/mol
-108.56 kcal/mol
-108.56 kcal/mol
0.00 kcal/mol
0.00 kcal/mol
-93.87 kcal/mol
-93.87 kcal/mol
-93.87 kcal/mol
-93.87 kcal/mol
70.27 kcal/mol
70.27 kcal/mol
0.00 (kcal/mol)**2
0.00 (kcal/mol)**2
142.48 (kcal/mol)**2
142.48 (kcal/mol)**2
142.48 (kcal/mol)**2
142.48 (kcal/mol)**2
1.7822
1.7822
4.1719
4.1719
-1913.53
-1913.53
0.0000
0.0000
1.0000 (= 469.51 Angstrom**2)
1.0000 (= 469.51 Angstrom**2)
299.60 kcal/mol
299.60 kcal/mol
143.17 kcal/mol
143.17 kcal/mol
190.92 kcal/mol
190.92 kcal/mol
156.43 kcal/mol
156.43 kcal/mol
958.81 (kcal/mol)**2
958.81 (kcal/mol)**2
0.82
0.82
0.02
0.02
3868.51 eV.Angstrom**2
3868.51 eV.Angstrom**2
371.59 kcal/mol
371.59 kcal/mol
247.44 kcal/mol
247.44 kcal/mol
284.79 kcal/mol
284.79 kcal/mol
124.15 kcal/mol
124.15 kcal/mol
729.07 (kcal/mol)**2
729.07 (kcal/mol)**2
0.58
0.58
-0.48
-0.48
5782.04 eV.Angstrom**2

```
```

5782.04 eV.Angstrom**2

```
```

| Maximum field normal | 16.61 | kcal/mol.Angstrom | |
|---|---|---|---|
| Minimum field normal | -41.48 | kcal/mol.Angstrom |
| Mean field | -0.45 | kcal/mol.Angstrom |
| Field range | 58.09 | $\mathrm{kcal} / \mathrm{mol}$. Angstrom |
| Total field variance | 63.26 | (kcal/mol.Angstrom)**2 |
| +ve field variance | 6.65 | (kcal/mol.Angstrom)**2 |
| -ve field variance | 66.53 | (kcal/mol.Angstrom)**2 |
| Field balance param. | 0.08 | |
| Field skew | 2.34 | |
| Field kurtosis | 4.277 | |
| Integral $F(N)$ | 51.52 | kcal.Angstrom/mol |
| Integral $\mathrm{F}(\mathrm{N}$ +ve) | 1333. | kcal.Angstrom/mol |
| Integral $\mathrm{F}(\mathrm{N}$-ve) | -1281. | kcal.Angstrom/mol |
| Integral \|F(N)| | 2614. | kcal.Angstrom/mol |

<> Spherical-Harmonic Hybridization:

| Shape hybrids | | : ${ }^{\text {c }}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17.575999 | 1.110912 | 3.450834 | 2.848845 | 1.410614 | 1.601925 |
| 0.752083 | 0.688161 | 0.462308 | 0.389757 | 0.387720 | 0.318746 |
| 0.254804 | 0.212811 | 0.209025 | 0.200487 | | |
| MEP hybrids | | | | | |
| 13.221169 | 4.733832 | 26.182832 | 18.490714 | 13.995110 | 10.726190 |
| 7.222067 | 8.122172 | 4.622533 | 4.919965 | 4.395602 | 3.581424 |
| 2.541402 | 2.738680 | 1.628924 | 2.033210 | 1.920261 | 1.871571 |
| 1.474479 | 1.036117 | 1.018238 | | | |
| IE (1) hybrids | | | | | |
| 1698.2772 | 90.2239 | 81.3709 | 62.4721 | 59.3232 | 54.5834 |
| 53.5801 | 54.9031 | 40.0301 | 44.6893 | 25.5340 | 24.8825 |
| 19.8329 | 15.9870 | 18.4079 | 15.7295 | 14.4314 | 16.4220 |
| 14.7815 | 0.0000 | 0.0000 | | | |
| EA(l) hybrids | | | | | |
| 324.0505 | 6.1912 | 12.8642 | 25.9653 | 13.9372 | 16.5122 |
| 8.5512 | 9.0229 | 8.0845 | 7.5242 | 6.2268 | 5.4009 |
| 5.1364 | 7.5775 | 5.6359 | 4.4817 | 4.8393 | 3.7347 |
| 3.7375 | 3.6142 | 3.4498 | | | |

Alpha(l) hybrids
. 01354601
0.011868780 .00889862
$\begin{array}{lll}0.00683106 & 0.00625184 & 0.00851872 \\ 0.00000000 & 0.00000000 & 0.0000000\end{array}$

| Field(N) | hybrids | | |
| ---: | ---: | ---: | ---: |
| 2.6427 | 1.8637 | 13.525 | |
| 6.0763 | 7.7809 | 5.451 | |
| 4.7299 | 4.2977 | 2.496 | |
| 3.3702 | 2.1930 | 1.933 | |

| 10.4408 | 10.4958 | 8.0665 |
| ---: | ---: | ---: |
| 5.8161 | 5.6350 | 5.4261 |

$-2.4960-3.4375-8431 \quad 4.0457$

Figure 15 continued
$<>$ Standard rotationally invariant fingerprint:(L. Mavridis, B. D. Hudson and D. W. Ritchie, J. Chem. Inf. Model., 2007, 47, 1787-1796.)

| 4.19237 | 1.05400 | 1.85764 | 1.68785 | 1.18769 |
| ---: | ---: | ---: | ---: | ---: |
| 1.26567 | 0.867227 | 3.63609 | 2.17574 | 5.11692 |
| 4.30008 | 3.74100 | 3.27509 | 2.68739 | 2.84994 |
| 2.15001 | 2.21810 | 2.09657 | 1.89247 | 1.59418 |
| 41.2102 | 9.49863 | 9.02058 | 7.90393 | 7.70216 |
| 7.38806 | 7.31984 | 18.0014 | 2.48822 | 3.58666 |
| 5.09562 | 3.73325 | 4.06352 | 2.92425 | 1.00675 |
| 0.228934 | 0.182796 | 0.173025 | 0.148046 | 0.122377 |
| 0.108944 | 1.62565 | 1.36517 | 3.67771 | 3.23123 |
| 3.23973 | 2.84016 | 2.46502 | 2.78942 | 2.33483 |
| 2.41165 | 2.37382 | 2.32939 | 2.17484 | |

<> Atomic surface properties:

| Atom | | Area | MEP | | IE (l) | | EA (1) | | mean | Field(N) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | max | min | max | min | max | min | pol. | max | min |
| C | 1 | 0.000 | | | | | | | | | |
| 0 | 2 | 0.073 | -38.63 | -41.62 | 535.49 | 532.95 | -77.41 | -79.32 | 0.260 | -21.49 | -27.99 |
| C | 3 | 3.380 | -6.38 | -46.92 | 578.33 | 474.12 | -41.12 | -89.61 | 0.307 | -2.87 | -30.97 |
| C | 4 | 1.259 | -5.17 | -15.60 | 573.38 | 498.18 | -67.85 | -90.38 | 0.322 | -4.23 | -8.82 |
| C | 5 | 0.699 | -8.33 | -13.90 | 573.55 | 531.88 | -84.05 | -92.54 | 0.320 | -1.60 | -7.33 |
| C | 6 | 0.000 | | | | | | | | | |
| C | 7 | 0.803 | -9.81 | -15.04 | 559.27 | 516.68 | -71.66 | -91.24 | 0.319 | -2.88 | -9.76 |
| C | 8 | 4.155 | -1.37 | -21.94 | 585.31 | 484.68 | -48.35 | -95.74 | 0.295 | 2.87 | -18.92 |
| N | 9 | 4.183 | -14.72 | -32.41 | 535.55 | 452.61 | -79.85 | -104.91 | 0.279 | -13.09 | -41.48 |
| C | 10 | 10.328 | -1.84 | -27.18 | 633.68 | 532.90 | -38.86 | -86.78 | 0.284 | 3.35 | -26.40 |
| N | 11 | 0.000 | | | | | | | | | |
| N | 12 | 1.441 | -14.69 | -33.29 | 538.04 | 472.64 | -74.72 | -98.64 | 0.268 | -16.14 | -37.18 |
| C | 13 | 6.263 | -8.51 | -26.51 | 637.06 | 512.83 | -38.29 | -82.55 | 0.286 | -0.33 | -26.70 |
| N | 14 | 0.000 | | | | | | | | | |
| C | 15 | 2.104 | -7.00 | -15.39 | 589.73 | 496.41 | -64.28 | -92.21 | 0.316 | -3.39 | -9.83 |
| C | 16 | 3.888 | -11.81 | -43.40 | 569.55 | 479.96 | -40.72 | -85.82 | 0.310 | -4.76 | -35.28 |
| 0 | 17 | 0.000 | | | | | | | | | |
| C | 18 | 0.000 | | | | | | | | | |
| C | 19 | 6.191 | -17.33 | -48.50 | 583.22 | 465.65 | -46.33 | -86.05 | 0.315 | -6.05 | -34.37 |
| 0 | 20 | 2.039 | -31.11 | -44.39 | 532.30 | 445.05 | -75.31 | -93.15 | 0.247 | -13.39 | -34.53 |
| C | 21 | 0.000 | | | | | | | | | |
| H | 22 | 32.636 | 13.06 | -39.48 | 560.92 | 405.94 | -82.21 | -99.66 | 0.297 | 8.86 | -25.63 |
| H | 23 | 21.586 | 14.07 | -20.13 | 561.93 | 408.35 | -83.75 | -96.08 | 0.294 | 9.65 | -28.51 |
| H | 24 | 24.162 | 14.04 | -30.19 | 567.47 | 407.17 | -68.79 | -95.29 | 0.292 | 9.71 | -17.80 |
| H | 25 | 6.870 | 11.16 | -5.32 | 527.12 | 425.97 | -83.14 | -95.64 | 0.288 | 7.62 | -5.91 |
| H | 26 | 18.505 | 7.91 | -7.43 | 535.39 | 400.22 | -87.77 | -100.66 | 0.299 | 5.64 | -5.91 |
| H | 27 | 17.884 | 7.35 | -20.62 | 543.64 | 399.67 | -68.59 | -100.81 | 0.303 | 4.53 | -21.74 |
| H | 28 | 26.817 | 8.86 | -27.87 | 536.84 | 413.57 | -60.23 | -103.43 | 0.284 | 5.88 | -32.28 |
| H | 29 | 33.032 | 16.80 | -28.67 | 671.20 | 474.61 | -71.99 | -107.85 | 0.248 | 16.61 | -32.31 |
| H | 30 | 32.852 | 16.44 | -28.20 | 669.03 | 476.76 | -72.53 | -107.92 | 0.241 | 16.30 | -32.17 |
| H | 31 | 33.925 | 11.43 | -28.95 | 657.35 | 471.32 | -67.58 | -108.56 | 0.244 | 12.43 | -35.13 |
| H | 32 | 9.935 | 11.30 | -27.11 | 642.05 | 472.51 | -73.10 | -99.96 | 0.259 | 12.66 | -34.71 |
| H | 33 | 5.296 | 9.88 | -13.60 | 504.92 | 434.61 | -73.74 | -96.58 | 0.295 | 7.73 | -9.34 |
| H | 34 | 29.289 | 11.33 | -40.37 | 565.02 | 406.91 | -80.26 | -99.68 | 0.291 | 7.86 | -33.45 |
| H | 35 | 23.555 | 11.45 | -33.33 | 567.66 | 407.69 | -72.90 | -95.65 | 0.292 | 8.06 | -23.21 |
| H | 36 | 23.014 | 11.40 | -13.11 | 563.89 | 407.56 | -81.58 | -99.03 | 0.295 | 8.02 | -12.33 |
| H | 37 | 33.964 | 4.59 | -38.61 | 554.62 | 394.98 | -87.16 | -108.55 | 0.294 | 4.16 | -30.31 |
| H | 38 | 18.880 | 4.19 | -40.99 | 558.72 | 396.48 | -84.55 | -108.23 | 0.298 | 3.76 | -25.13 |
| H | 39 | 26.446 | 3.97 | -34.03 | 550.48 | 391.05 | -86.20 | -107.61 | 0.296 | 3.63 | -26.94 |

Total 465.455
<> Stationary points on the molecular surface (A. Jakobi, H. Mauser and T. Clark, J. Mol. Model., 2008, 14, 547-558)
<>
$x \quad y$
value
<> $\quad 5$ MEP Maxima

| 4.7936 | 2.2899 | -2.2084 | |
| :---: | :---: | ---: | ---: |
| 2.4965 | 4.0712 | 5.7445 | |
| 1.0770 | 5.8131 | 5.4602 | |
| | -2.2439 | -2.1297 | 2.8572 |
| | -5.5622 | -3.4081 | -0.8626 |
| <> | 3 MEP | Minima | $:$ |
| | -0.3945 | -4.1333 | -2.6456 |
| | 1.9197 | -2.8411 | -3.4453 |
| | 2.5161 | -2.1045 | -3.3008 |

<>
3 IEL Maxima

| -1.4144 | 5.4218 |
| ---: | ---: |
| -3.4005 | 1.4346 |
| 2.5158 | 3.2319 |

3.9311
2.5848
3.2339
671.2
<>
13 IEL Minima
$:$ $\begin{array}{rr}2.1418 & 1.5561 \\ 0.4940 & -4.6999 \\ -4.0895 & -2.9712\end{array}$

| -4.0895 | -2.9712 | 1.8500 |
| ---: | ---: | ---: |
| 3.6525 | 1.2975 | 1.2233 |

| 0.1300 | -4.7857 | 1.5109 | 407.6 |
| ---: | ---: | ---: | ---: |
| -2.8688 | -6.9328 | -1.6690 | 405.0 |

| -2.8688 | -6.9328 | -1.6690 | 405.9 |
| ---: | ---: | ---: | ---: |
| 0.1327 | 5.3805 | -2.2317 | 413.6 |

| -5.1327 | 5.3805 | -2.2317 | 413.6 |
| ---: | ---: | ---: | ---: |
| -3.7288 | -1.8541 | -3.8279 | 407.2 |

| 2.7277 | -6.5570 | -2.9447 | 395.0 |
| ---: | ---: | ---: | ---: |
| -4.8206 | 1.4292 | 0.2199 | 399.7 |

| 4.7699 | -2.4304 | 0.0000 | 396.5 |
| :--- | :--- | :--- | :--- |

| -1.4313 | 2.8849 | -3.5503 | 400.2 |
| ---: | ---: | ---: | ---: |
| 6.1623 | -1.4832 | -2.6349 | 406.9 |

<> 4 EAL Maxima

| 0.4747 | -0.8240 | -3.7107 | -40.72 |
| ---: | ---: | ---: | ---: |
| -1.6927 | 4.7425 | 3.2127 | -38.86 |

10 EAL Minima

| 0.2649 | -5.2698 |
| :--- | :--- |
| 1.8583 | 6.9358 |

| 1.8583 | 6.9358 |
| :--- | ---: |
| 3.2295 | -3.3153 |

| 1.8583 | -3.3153 | -3.2557 | -108 |
| ---: | ---: | ---: | ---: |
| -1.0575 | 0.1415 | 5.3927 | -108.6 |

| -1.0575 | 0.1415 | 5.3927 | -108.6 |
| ---: | ---: | ---: | ---: |
| 0.7838 | -3.6877 | 1.7626 | -104.7 |

| 0.7838 | -3.6877 | 1.7626 | -104.7 |
| ---: | ---: | ---: | ---: |
| 0.1522 | -5.6007 | -1.7682 | -108.0 |

| 0.1522 | -5.6007 | -1.7682 | -108.0 |
| :--- | :--- | :--- | :--- |
| 0.9842 | -4.8653 | -3.4860 | -106.7 |

| 0.4813 | 2.5816 | 6.0814 | -107.9 |
| ---: | ---: | ---: | ---: |
| 0.9630 | -3.4415 | 1.7646 | -104.7 |

| 0.9219 | -4.0142 | 1.6785 | -104.7 |
| :--- | :--- | :--- | :--- |

<> 4 Alpha(1) Maxima :

| | 0.0000 | 0.0000 | -3.4565 | 0.3237 |
| :---: | :---: | :---: | :---: | :---: |
| | -1.3158 | -0.7255 | -3.2393 | 0.3286 |
| | -2.9170 | 3.4094 | 0.9959 | 0.3259 |
| | 0.4062 | -2.4010 | -3.8398 | 0.3374 |
| <> | 5 Alpha(l) Minima | | | |
| | 0.7758 | -4.0667 | -3.4739 | 0.2387 |
| | 0.0553 | -4.3637 | -2.7928 | 0.2397 |
| | 0.6923 | 3.3892 | 6.7598 | 0.2372 |
| | -1.5392 | -0.4236 | 5.3172 | 0.2411 |
| | 0.4406 | -4.1863 | -3.2471 | 0.2368 |

<> $\quad 4 \mathrm{~F}(\mathrm{~N})$ Maxima

| | -1.4601 | -2.3007 | 2.3046 | 12.36 |
| :---: | :---: | :---: | :---: | :---: |
| | 1.0770 | 5.8131 | 5.4602 | 15.59 |
| | 1.8476 | 2.9100 | 5.7881 | 12.05 |
| | 2.0813 | 3.0857 | 5.6405 | 12.29 |
| <> | $14 \mathrm{~F}(\mathrm{~N})$ | Minima | : | |
| | 0.0000 | 6.1088 | 1.0831 | -37.29 |
| | -3.5755 | 1.0595 | 2.6204 | -33.42 |
| | 1.7497 | -3.0152 | -3.5015 | -32.52 |
| | 0.1287 | 1.1795 | 4.6284 | -31.16 |
| | 1.0746 | 5.7964 | 0.7796 | -39.56 |
| | 0.5483 | -3.6959 | -3.4345 | -24.22 |
| | -0.3410 | 1.4795 | 4.9348 | -31.52 |
| | -1.7084 | 2.2379 | 4.4818 | -33.09 |
| | -1.5061 | 5.1668 | 4.1521 | -25.94 |
| | -1.1249 | -4.1980 | 0.7695 | -24.68 |
| | 3.0986 | -1.2866 | 0.7446 | -11.75 |
| | -0.1734 | -4.1889 | -2.6807 | -32.48 |
| | 0.4511 | -2.1316 | -3.8367 | -14.85 |
| | 2.5161 | -2.1045 | -3.3008 | -31.59 |

<> ParaSurf used

After printing the program options, ParaSurf 11^{Tm} prints the shift in coordinates of the centre and the RMSD fits for the surface requested by the translate option. For speed, these fits use a lower number of surface points than the full fits that follow and are only calculated up to order six. The translated spherical-harmonic coefficients are printed in the output SDF file for use by ParaFit ${ }^{T \mathrm{M}}$. ParaSurf' $11^{\text {m" }}$ then moves on to fit the calculated shrink-wrap surface at full resolution for each of the local properties. It lists the root-mean-square deviations (RMSDs) for the surface points as a function of the order of the spherical-harmonic expansion, first for the geometry of the surface and then for each of the five local properties. The RMSD values give an idea of how well each order of the spherical-harmonic expansion fits the calculated shrinkwrap surface or the relevant property. The highest order used by ParaSurf ${ }^{\text {T" }}$ is 15 for the surface itself and 20 for each property.

The descriptor table is then printed. For molecules with no surface areas with positive $E A_{L}$, $\sigma_{E A_{L+}}^{2}$ is set to zero. The descriptors are those described in Table 1.

The spherical-harmonic hybridization coefficients are then listed for the shape and the five local properties. The coefficients are listed by increasing l starting from zero. The standard rotationally invariant fingerprint (RIF) [40] is printed. Note that the individual RIF-values correspond to the square roots of the hybridization coefficients from the tables above and that the RIF definition has been expanded to include hybridization coefficients of the field normal to the surface (the last 13 elements).

The table of atomic surface properties is derived by first finding the atom that contributes most (according to a Coulson analysis) to the electron density for each surface point. The point is then assigned to this atom and the maxima and minima in the MEP, $\mathrm{IE}_{\mathrm{L}}, \mathrm{EA}_{\llcorner }$and F_{N} as well as the mean local polarizability for the points assigned to each atom are calculated. Note that, because of the fitting procedure, the values reported in this table may contain spurious ones if the fitted surface comes particularly close to an atom (or does not approach it). This situation is generally recognisable from the RMSD values printed for the fit. The surface used to calculate the descriptors and atomic-surface properties is the fitted spherical-harmonic surface of order 15.

The maxima and minima of the local properties selected according to the criteria outlined in reference 33 are then listed. These points are defined by their Cartesian coordinates and the corresponding values of the local property. In this example, no significant maxima and minima were found for the field normal to the surface. Generally, more maxima and minima are found for isodensity surfaces than for spherical-harmonic ones.

3.4.2 For a marching-cube surface

Figure 16 shows the output for a calculation using the options surf=cube for trimethoprim.

```
<> ParaSurf'1 , Revision A1
<> Copyright (c) 2006,2007,2008,2009,2010,2011 Friedrich-Alexander-
                                    Universitaet Erlangen-Nuernberg and Cepos InSilico Ltd.
    All rights reserved.
<> Input = trimethoprim.sdf
<<>> Molecule 1 of 1 <<>>
<> Program options :
    Using marching-cube isodensity surface
    Surface fitting turned off
    Using an isodensity surface contour
    Isodensity value = 0.3000E-03 electrons/Angstrom**3
    Triangulation mesh = 0.20 Angstrom
    Using multipole electrostatics
<> AM1 calculation for Trimethoprim
<> Number of triangles = 15024
<> Number of unique points : }751
<> Property ranges:
    Density : 0.2881E-03 to 0.3099E-03
    IE(1) : 392.35 to 654.76
    EA(l) : -109.82 to -29.09
    MEP : -69.88 to 24.82
    Alpha(l) : 0.2288 to 0.3301
    Field(N) : -106.80 to 72.30
```

Figure 16 ParaSurf ${ }^{T M}$ output for trimethoprim using a marching-cube surface.

```
<> Descriptors :
    Dipole moment
    Dipolar density
    Molecular pol.
    Molecular weight
    Globularity
    Total surface area
    Molecular volume
    Most positive MEP
    Most negative MEP
    Mean +ve MEP
    Mean -ve MEP
    Mean MEP
    MEP range
    MEP +ve Variance
    MEP -ve Variance
    MEP total variance
    MEP balance parameter:
    MEP balance*variance :
    MEP skewness
    MEP kurtosis
    Integral MEP
    Maximum IE(l)
    Minimum IE(l)
    Mean IE(l)
    IE(1) range
    IE(l) variance
    IE(l) skewness
    IE(l) kurtosis
    Integral IE(l)
    Maximum EA(l)
    Minimum EA(l)
    Mean +ve EA(l)
    Mean -ve EA(l)
    Mean EA(l)
    EA(1) range
    EA(l) +ve variance
    EA(l) -ve variance
    EA(l) total variance
    EA(1) skewness
    EA(l) kurtosis
    Integral EA(l)
    EA(l) balance param. :
    Fraction pos. EA(l) :
    Max. local Eneg.
    Min. local Eneg.
    Mean local Eneg.
    Local Eneg. range
    Local Eneg. variance
    Local Eneg. skewness
    Local Eneg. kurtosis :
    Integral local Eneg. :
    Max. local hardness
    Min. local hardness
    Mean local hardness
    Local hard. range
    Local hard. variance
    Local hard. skewness
    Local hard. kurtosis
    Integral local Hard.
```

Dipole moment olar density Molecular weight Molecular volume

Most positive MEP Most negative MEP
Mean +ve MEP

Mean MEP
MEP range
+ve Variance
MEP -ve Variance

MEP balance parameter:
MEP balance*variance :

MEP kurtosis
Integral MEP
Maximum IE(1)

Mean IE (l)
IE(1) range
(1) variance

Integral IE(l)
Maximum EA(1)
Minimum EA(1)
Mean -ve EA(l)
Mean EA(l)
EA(1) range
A(1) +ve variance
EA(1) total variance
EA(1) skewness
Integral EA(l)
EA(l) balance param. saction pos. EA(l)

Max. local Eneg.
Min. local Eneg.
local Eneg.

Local Eneg. variance
Local Eneg. skewness
Local Eneg. kurtosis :

Max. local hardness . local hardness Local hard. Local hard. variance Local hard. kurtosis Integral local Hard.

```
```

 1.2467 Debye
    ```
```

 1.2467 Debye
 0.3155E-02 Debye.Angstrom**-3
 0.3155E-02 Debye.Angstrom**-3
 128.5408 Angstrom**3
 128.5408 Angstrom**3
 290.32
 290.32
 0.7042
 0.7042
 369.79 Angstrom**2
 369.79 Angstrom**2
 395.13 Angstrom**3
 395.13 Angstrom**3
 24.82 kcal/mol
 24.82 kcal/mol
 -69.88 kcal/mol
 -69.88 kcal/mol
 9.05 kcal/mol
 9.05 kcal/mol
 -18.72 kcal/mol
 -18.72 kcal/mol
 -4.94 kcal/mol
 -4.94 kcal/mol
 94.70 kcal/mol
 94.70 kcal/mol
 31.60 (kcal/mol)**2
 31.60 (kcal/mol)**2
 239.92 (kcal/mol)**2
 239.92 (kcal/mol)**2
 271.53 (kcal/mol)**2
 271.53 (kcal/mol)**2
 0.1028
 0.1028
 27.9261 kcal/mol
 27.9261 kcal/mol
 -1.0234
 -1.0234
 0.6111
 0.6111
 -1674.26 kcal.Angstrom**2/mol
-1674.26 kcal.Angstrom**2/mol
654.76 kcal/mol
654.76 kcal/mol
392.35 kcal/mol
392.35 kcal/mol
486.30 kcal/mol
486.30 kcal/mol
262.41 kcal/mol
262.41 kcal/mol
3584.97 (kcal/mol)**2
3584.97 (kcal/mol)**2
0.4205
0.4205
-0.7616
-0.7616
7764.76 eV.Angstrom**2
7764.76 eV.Angstrom**2
-29.09 kcal/mol
-29.09 kcal/mol
-109.82 kcal/mol
-109.82 kcal/mol
0.00 kcal/mol
0.00 kcal/mol
-89.08 kcal/mol
-89.08 kcal/mol
-89.08 kcal/mol
-89.08 kcal/mol
80.74 kcal/mol
80.74 kcal/mol
0.00 (kcal/mol)**2
0.00 (kcal/mol)**2
276.47 (kcal/mol)**2
276.47 (kcal/mol)**2
276.47 (kcal/mol)**2
276.47 (kcal/mol)**2
1.4621
1.4621
1.5753
1.5753
-1438.92 eV.Angstrom**2
-1438.92 eV.Angstrom**2
0.0000
0.0000
1.0000 (= 369.79 Angstrom**2)
1.0000 (= 369.79 Angstrom**2)
290.14 kcal/mol
290.14 kcal/mol
143.75 kcal/mol
143.75 kcal/mol
198.61 kcal/mol
198.61 kcal/mol
146.39 kcal/mol
146.39 kcal/mol
1205.84 (kcal/mol)**2
1205.84 (kcal/mol)**2
0.52
0.52
-0.78
-0.78
3162.92 eV.Angstrom**2
3162.92 eV.Angstrom**2
371.30 kcal/mol
371.30 kcal/mol
247.91 kcal/mol
247.91 kcal/mol
287.69 kcal/mol
287.69 kcal/mol
123.39 kcal/mol
123.39 kcal/mol
724.88 (kcal/mol)**2
724.88 (kcal/mol)**2
0.45
0.45
-0.66
-0.66
4601.84 eV.Angstrom**2

```
```

4601.84 eV.Angstrom**2

```
```


<> Stationary points on the molecular surface (A. Jakobi, H. Mauser and T. Clark, J. Mol. Model., 2008, 14, 547-558)				
	x	y	z	value
<>	$>\quad 11 \mathrm{MEP}$	Maxima	:	
	-3.2288	1.8355	-3.6285	7.168
	3.6569	1.8897	-3.0618	17.81
	-1.7098	3.4897	-3.2285	12.76
	-0.8648	3.3397	-3.2785	13.34
	-5.4931	-3.9386	-2.2285	22.24
	-4.2431	0.2897	-2.4285	9.660
	3.0069	-5.0936	-0.8285	8.063
	-3.7931	-0.7603	0.1132	6.919
	-1.9431	-1.8603	1.1798	19.01
	-2.3764	-1.7103	1.7715	22.73
	1.0569	5.1397	4.3215	24.82
<>	$>\quad 12 \mathrm{MEP}$	Minima	:	
	1.4569	-3.0103	-3.9285	-63.17
	2.0184	-1.7936	-4.0285	-69.88
	-1.4630	-4.0603	-3.4285	-69.70
	-1.6931	-4.0603	-0.8285	-55.73
	-0.7431	5.5397	0.1165	-53.25
	-0.3431	5.5897	0.1498	-57.47
	0.6569	5.2397	0.2882	-54.40
	0.0569	5.5397	0.2082	-58.79
	-3.7431	0.5680	1.3882	-55.54
	-3.6931	0.7730	1.3265	-57.27
	-1.5431	4.9397	2.9548	-53.00
	-1.5431	2.1564	3.4715	-55.66
<>	$>\quad 10$ IEL	Maxima	:	
	-0.9431	-0.9603	-3.8285	641.1
	-0.3098	-1.4603	-0.4785	643.2
	0.5569	2.1397	0.6548	654.8
	-3.4431	1.4314	0.9715	625.4
	-2.2931	3.5980	0.9515	650.5
	-0.2431	-0.0103	1.0765	644.9
	-1.1431	5.3397	1.6998	634.2
	-3.0431	1.5397	2.1715	635.0
	1.4569	3.2397	2.3798	644.4
	-1.7264	3.7397	3.1965	634.5
<>	> 17 IEL	Minima	:	
	1.2569	0.8230	-4.9285	411.0
	1.6501	1.3397	-4.9785	408.3
	-4.2098	-2.2603	-4.4285	407.9
	-1.9431	2.5980	-3.9785	401.2
	2.3236	-6.2603	-3.6285	396.2
	5.2069	-1.0936	-3.6285	408.3
	-0.7431	3.9847	-3.2285	418.8
	-3.7098	-6.3603	-2.6785	407.5
	-0.3931	4.7397	-2.8285	415.4
	3.6569	-2.5603	-1.2285	394.2
	-4.7598	1.1397	-1.0525	400.5
	2.9019	0.9397	-0.2452	408.2
	3.0402	1.1397	-0.3285	408.1
	0.0569	-4.8436	0.2715	392.3
	0.3069	5.4397	0.1632	417.8
	-4.2014	-3.0603	0.4215	408.3
	-0.9681	1.6564	3.4715	417.2

Figure 16 continued

Figure 16 continued

<>	$23 \mathrm{~F}(\mathrm{~N})$	Maxima	:	
	3.2736	-1.6603	-4.2285	10.94
	3.4819	-2.1103	-3.2618	13.53
	3.6569	1.8897	-3.0618	14.91
	-1.1931	4.4397	-3.0285	11.27
	-1.9431	-5.2603	-2.0202	13.14
	-5.4931	-3.9386	-2.2285	19.55
	-0.9181	5.3397	-2.0118	11.05
	0.1569	5.1397	-1.5735	10.84
	-0.7431	-4.2603	-0.9285	22.99
	1.8569	1.7397	-0.9285	10.19
	-3.9431	-0.6020	-0.1785	14.06
	-3.9431	0.9397	0.1715	11.36
	-3.0431	2.3897	1.3975	10.18
	1.1569	2.7397	1.3215	11.44
	0.4569	5.7897	1.0715	28.10
	-2.1431	-1.7603	1.6432	26.39
	-2.2431	3.8314	1.5715	12.93
	-2.1232	1.0147	3.3715	23.98
	-1.9431	-0.0603	3.7715	19.99
	-1.8024	-0.2436	3.7548	20.21
	-1.5431	0.7897	3.4715	25.15
	-0.1181	2.2397	3.8882	25.13
	0.6069	5.1397	4.5715	24.74
<>	$24 \mathrm{~F}(\mathrm{~N})$	Minima	:	
	0.0569	-2.6053	-4.3285	-22.45
	1.2569	-3.3436	-4.1285	-72.71
	2.0184	-1.7936	-4.0285	-100.6
	-0.3764	0.3397	-3.9785	-18.81
	-1.7523	-4.0603	-3.5285	-95.19
	-2.3431	-0.8353	-3.7285	-19.42
	-0.3431	-4.5603	-3.1934	-69.90
	3.4569	-2.4210	-2.6285	-10.39
	3.5569	-2.3103	-2.2285	-12.28
	3.0569	-1.6603	-1.5285	-31.37
	2.1736	-1.4603	-1.1285	-59.69
	-1.5431	-4.0603	-0.8785	-99.20
	0.1286	-2.4603	-0. 5285	-17.08
	-0.9931	-2.0520	-0.2285	-13.51
	0.3569	-0.2936	-0.2285	-21.88
	-1. 5931	-2.2603	-0.1285	-14.25
	0.4569	1.5397	0.0465	-20.69
	-3.2431	2.7397	-0.0868	-25.59
	0.3069	5.4397	0.1632	-92.14
	-0.2431	-0.0103	1.0765	-13.49
	-3.6931	0.7730	1.3265	-93.01
	1.6569	3.5397	2.5432	-13.36
	-1.5264	4.9647	2.9915	-80.51
	-1.1231	1.9647	3.5548	-90.08

Figure 16 continued

```
<><><><><<><><><><>><><><><>><><><><>><><><><><>><><><><>><><><><>><><><><><<><><><><>><><><><>><>
ParaSurf ADMET Profiler
```



```
<> Binned SIM models :
Model Property Value StdDev
No.
1 Single CORINA conformation logP(OW) \(0.75+/-0.72\)
<> Model-derived descriptors :
Model No. : 1
Code : LP1
Maximum : 164.0
Minimum : -497.1
Mean : 3.385
Variance : 1741.
+ve variance : 985.5
-ve variance : 2922.
balance param.: 0.1886
Skew : 3.299
Kurtosis : 19.58
Dipolar moment:
\(x: 6.448\)
y : -66.34
: -70.00
Total : 96.66
```


Figure 16 continued

The table of RMSD values is no longer printed and the range of the electron-density values for the surface points (a test for the quality of the surface) is closer to the target isodensity value (in this case $0.0003 e^{-} \AA^{-3}$) than for the fitted surface. The internal precision used by the program is $\pm 2 \%$ of the target isodensity value. The values of the descriptors and the atomic-surface properties are more consistent using the marching-cube surface and are recommended for QSPR and surface-integral applications.

3.4.3 For a job with Shannon entropy

Figure 17 and Figure 18 show the relevant sections of the output for a calculation using the options surf=cube for trimethoprim with the extra shannon option, which requests internal and external Shannon entropies using the default bins.txt statistical background file from the PARASURF_ROOT directory. The output is identical to that shown in Figure 16 except that an additional Shannon entropy block is printed after the descriptors, as shown in Figure 17:

Figure 17 Shannon entropy section of the ParaSurf® output for trimethoprim, 1, using a marching-cube isodensity surface.
If the statistical background file is not found or does not have the correct format, only the "internal" Shannon entropy appears in this table.

The Shannon entropy is also analyzed based on the surfaces assigned to the individual atoms to give the table shown in Figure 18:

Shannon-entropy analysis :

$\begin{array}{llllllllll}18.651 & 0.3467 & 0.0890 & 0.2854 & 5.3230 & 0.4786 & 0.2533 & 0.4290 & 8.0007\end{array}$

Figure 18 Shannon entropy section of the ParaSurf ${ }^{\text {® }}$ output for trimethoprim, 1, using a marching-cube isodensity surface.

3.4.4 For a job with autocorrelation similarity

In order to calculate, for instance, the autocorrelation similarities between captopril and trimethoprim, first calculate the reference compound (in this case captopril) and request that the autocorrelation functions be written to the ParaSurf ${ }^{\text {Tm }}$ SDF-output file:

```
parasurf captopril surf=cube autocorr
```

The calculate the autocorrelations for trimethoprim and their similarities to those of captopril:

```
parasurf trimethoprim surf=cube autocorr=captopril_p.sdf
```

This leads to the following additional output from ParaSurf ${ }^{\text {TM }}$

```
<> Surface Autocorrelation vectors written to the SD-File
<> Calculating autocorrelation similarities to captopril_p.sdf
<> Lead molecule = OC (=O)C1CCCN1C(=O)C (C)CS
<> Individual autocorrelation similarities;
\begin{tabular}{llllllll} 
& Shape & MEP(tot) & MEP(+-) & MEP(++) & MEP(--) & IE (l) & EA (l)
\end{tabular} Alpha(l)
```

Figure 19 Similarity output using autocorrelation functions. The lead molecule is captopril, which is defined in captopril_p.sdf using the SMILES string.

The "Total autocorrelation fingerprint similarity" refers to the shape, MEP(+-), MEP(++), $M E P(++), I E(L), E A(L)$ and Alpha(L) autocorrelation functions (a total of 448 bins). It is, however dominated by $\operatorname{IE}(\mathrm{L})$ and $\mathrm{EA}(\mathrm{L})$ because their numerical values are far larger than the other autocorrelation functions.

3.5 ParaSurf ${ }^{\text {TTM }}$ SDF-output

The SDF output file (a fixed-format file) contains additional blocks with the information generated by ParaSurf ${ }^{\text {TM }}$. These are:

<ParaSurf OPTIONS>

The ParaSurf ${ }^{T M}$ OPTIONS block consists of one line giving the options used in the ParaSurf ${ }^{T M}$ calculation. These are:

```
<surface> <fit> <electrostatic model> <isodensity level> (a4,2x,a4,2x,a5,2x,f8.3)
```

Where the individual variables can be:

<surface>	WRAP CUBE	Shrink-wrap surface Marching-cube surface
<fit>	NONE ISO SPHH	No fitting, unsmoothed marching-cube surface Marching-cube surface corrected to $\pm 2 \%$ of the preset isodensity value Spherical-harmonic surface fit
<electrostatic model>	NAOPC MULTI	NAO-PC electrostatics Multipole electrostatics
<isodensity level>	n.nn	The target isodensity value in $\mathrm{e}^{-} \AA^{-3}$
<solvent probe radius>		The radius of the solvent probe used to calculate the SES or SAS
<triangulation mesh>		The mesh size used to triangulate the Surface

<MOLECULAR_CENTERS>

The molecular centres block appears only for calculations that use spherical harmonic fits. It includes two lines of the form:

$$
\begin{aligned}
\text { "Spherical harmonic center } & =\text { ", } 3 f 12.6 \\
\text { "Center of gravity } & =\text { ", } 3 £ 12.6
\end{aligned}
$$

These blocks give the x, y and z coordinates of the centre of the molecule used for the sphericalharmonic fit and the centre of gravity, respectively. These two centres are usually identical, but may be different if the centre of gravity lies outside the molecule (e.g. for U-shaped molecules).

<SPHERICAL_HARMONIC_......>

The spherical harmonic fits are described in <SPHERICAL_HARMONIC_.... $>$ blocks. These blocks all have the same format and vary only in the property described. Each block has the form:

The spherical harmonic fits are described in <SPHERICAL_HARMONIC_.....> blocks. These blocks all have the same format and vary only in the property described. Each block has the form:

Order $=n n$	("Order = ",i4)
$1\left(c_{l}^{m}\right) m=-1$ to 1	(I5, 10f8.4/5x,10f8.4/5x,10f8.4/5x,10f8.4) (One set of coefficients each for $1=1$ to 15)
RMSDs: 1, $R M S D^{1}, R M S D^{2}$	("RMSDs:") (i8, 2f12.8) (One line for each 1 for $l=1$ to 15 , where RMSD 1 is the area-weighted RMSD and $R M S D^{2}$ the simple RMSD)

There are six such blocks, indicated by the tags:

```
<SPHERICAL_HARMONIC_SURFACE> The fitted molecular surface (radial distances) in Ångstrom
<SPHERICAL_HARMONIC_MEP> The MEP values at the spherical-harmonic surface (l = 20) in kcal mol
<SPHERICAL_HARMONIC_IE (1) >
<SPHERICAL_HARMONIC_EA (l)> The EA \ values at the spherical-harmonic surface (l = 20) in kcal mol
<SPHERICAL_HARMONIC_ALPHA (I)> The \alphaL values at the spherical-harmonic surface (I=20) in kcal mol}\mp@subsup{}{}{-1
<SPHERICAL_HARMONIC_FIELD (N) > The FN values at the spherical-harmonic surface (l=20) in kcal mol-1 Å-1
```


<ParaSurf Descriptors>

The ParaSurf ${ }^{\text {Tm }}$ descriptors block lists the calculated descriptors in the following groups:

Molecular:	$\mu, \mu_{\mathrm{D}}, \alpha, \mathrm{MW}, \mathrm{G}, \mathrm{A}, \mathrm{VOL}$
	("Molecular ",5f10.4,2f10.2)
MEP:	
IE(I):	$I E_{L}^{\max }, I E_{L}^{\min }, \overline{I E_{L}}, \Delta I E_{L}, \sigma_{I E}^{2}, \gamma_{1}^{I E}, \gamma_{2}^{I E}, \int_{\text {("IE (1) }} \quad \text { IE,5f10.2,2f10.4/12x, g12.6) }$
EA(I):	$\begin{aligned} & E A_{L}^{\max }, E A_{L}^{\min }, \overline{E A_{L+}}, \overline{E A_{L-}}, \overline{E A_{L}}, \Delta E A_{L}, \sigma_{E A+}^{2}, \sigma_{E A-}^{2}, \sigma_{E A}^{2}, v_{E A}, \delta A_{E A}^{+}, \mathrm{A}_{E A}^{+}, \gamma_{1}^{E A}, \\ & \left.\gamma_{2}^{E A}, \mathrm{~J}_{E A} \quad \text { ("EA(1) } \quad-7 £ 10.2 / 2 f 10.2,2 f 10.4, f 10.2,2 f 10.4 / 12 \mathrm{x}, \mathrm{~g} 12.6\right) \end{aligned}$
Eneg(1):	$\chi_{L}^{\max }, \chi_{L}^{\min }, \overline{\chi_{L}}, \Delta \chi_{L}, \sigma_{\chi}^{2}, \gamma_{1}^{\chi}, \gamma_{2}^{\chi}, \int_{\chi}$ ("Eneg(1) ",5f10.2,2f10.4/12x,g12.6)
Hard(I):	$\eta_{L}^{\max }, \eta_{L}^{\min }, \overline{\eta_{L}}, \Delta \eta_{L}, \sigma_{\eta}^{2}, \gamma_{1}^{\eta}, \gamma_{2}^{\eta}, \int_{\eta}$ ("Hard(1) ",5f10.2,2f10.4/12x,g12.6)
Alpha(I):	$\alpha_{L}^{\text {max }}, \alpha_{L}^{\text {min }}, \overline{\alpha_{L}}, \Delta \alpha_{L}, \sigma_{\alpha}^{2}, \gamma_{1}^{\alpha}, \gamma_{2}^{\alpha}, \int_{\alpha}$
F_{N}	

Jobs that include Shannon entropy give two extra sets of descriptors:

| Shannon(i): | $H_{i n}^{\max }, H_{i n}^{\min }, \overline{H_{i n}}, \sigma_{H_{i n}}^{2}, \int_{H_{i n}}$ | |
| :--- | :--- | :--- | :--- |
| Shannon(e): | $H_{e x}^{\max }, H_{e x}^{\min }, \overline{H_{e x}}, \sigma_{H_{e x}}^{2}, \int_{H_{e x}}$ | |
| | ("Shannon(i) $\quad, 4 f 10.4, f 10.2, f 10.4)$ | |

For calculations using a spherical-harmonic fit, the hybridization coefficients are printed to the .sdf file as follows (tag line followed by as many lines with the coefficients as necessary):

```
<SHAPE HYBRIDS>
<MEP HYBRIDS>
<IE (L) HYBRIDS>
<EA(L) HYBRIDS>
<ALPHA(L) HYBRIDS>
<FIELD(N) HYBRIDS>
```

$(15$ coefficients, 6f12.6)
$(20$ coefficients, $6 f 12.6$
$(20$ coefficients, $6 f 12.2)$
$(20$ coefficients, 6f12.2)
$(20$ coefficients, $6 f 12.8)$
$(20$ coefficients, $6 f 12.4)$

The hybridization coefficients are listed in order of increasing / from zero, exactly as in the output file.

The atomic surface properties are listed in the atomic order according to the following headings (tag line followed by as many lines with the surface properties as necessary):

```
<ATOMIC SURFACE AREAS>
<ATOMIC SURFACE MEP MAXIMA>
<ATOMIC SURFACE MEP MINIMA>
<ATOMIC SURFACE IE(L) MAXIMA>
<ATOMIC SURFACE IE(L) MINIMA>
<ATOMIC SURFACE EA(L) MAXIMA>
<ATOMIC SURFACE EA(L) MINIMA>
<ATOMIC SURFACE MEAN POL>
<ATOMIC SURFACE FIELD(N) MAXIMA>
<ATOMIC SURFACE FIELD(N) MINIMA>
```

Areas	$(10 £ 8.4)$
MEP maxima	$(10 £ 8.2)$
MEP minima	$(10 £ 8.2)$
IE(I) maxima	$(10 £ 8.2)$
IE(I) minima	$(10 £ 8.2)$
EA(I) maxima	$(10 £ 8.2)$
EA(I) minima	$(10 £ 8.2)$
Mean pol.	$(10 £ 8.4)$
FN maxima	$(10 £ 8.2)$
FN minima	$(10 £ 8.2)$

The properties correspond exactly to those printed in the table of surface properties in the output file.

<PROPERTY MAXIMA and MINIMA>

The ParaSurf ${ }^{\text {T" }}$ block for the maxima and minima of the local properties is defined as follows for each property:

Header line (maxima)	Number of maxima for the property: $N_{\text {max }}$, property $\{$ MEP, IEL, EAL or Alpha(L) $\}$	(I3,a," Maxima")
Nmax maxima lines	x, y, z, property value	(3f12.4, 3x, g10.4)
Header line (minima)	Number of minima for the property: $N_{\text {max }}$, property $\{$ MEP, IEL, EAL or Alpha(L) $\}$	(I3,a," Minima")
$N_{\text {min }}$ minima lines	x, y, z, property value	(3f12.4, 3x, 910.4)

<STANDARD RIF>

The rotationally invariant fingerprint [40] is printed as a list of 54 floating point numbers (5 g 12.6). The first 41 are those defined in reference [40] and the last 13 are the square roots of the hybridization coefficients for the normal field from $1=0-12$.

3.5.1 Optional blocks in the SDF-output file

A calculation including Shannon entropy gives two extra lines in the descriptors block of the SDF-output file:

The maximum, minimum, mean, variance and total "internal" Shannon entropies.

"Shannon(i)"

```
(4f10.4,f10.2,f10.4)
```

The maximum, minimum, mean, variance and total "external" Shannon entropies (if these are calculated).
"Shannon (e)"

```
(4f10.4,f10.2,f10.4)
```

Additionally, extra blocks for the atomic Shannon entropy-related variables are added to the SDF-output after the other atomic-property blocks:

```
<ATOMIC SURFACE MAXIMUM H (internal)>
```

Maximum "internal" Shannon entropies	$(10 £ 8.4)$
<ATOMIC SURFACE MINIMUM H (internal)>	
Minimum "internal" Shannon entropies	$(10 £ 8.4)$
<ATOMIC SURFACE MEAN H (internal)>	
Mean "internal" Shannon entropies	$(10 £ 8.4)$
<ATOMIC SURFACE TOTAL H (internal)>	
Total "internal" Shannon entropies	$(10 £ 8.4)$

If the external Shannon entropy is also calculated, the following blocks are also written:

$\left\lvert\,$<ATOMIC SURFACE MAXIMUM H Maximum "external" Shannon entropies (external)> <ATOMIC SURFACE MINIMUM H (external)> Minimum "external" Shannon entropies <ATOMIC SURFACE MEAN H (external)> Mean "external" Shannon entropies <ATOMIC SURFACE TOTAL H (external)> Total "external" Shannon entropies$(10 £ 8.4)\right.$

For calculations that include surface autocorrelations, these are written in the following blocks:

<SURFACE AUTOCORRELATION PARAMETERS>

The number of autocorrelation points	("ncorr = ",i6)	
The lower end of the autocorrelation range	("rmin	$=$ ",f10.6)
The bin size	("dcorr	$=$ ",f10.6)

This block then contains a table that gives all the autocorrelations as a table with the following headings:

Table 7: Column headings and definitions for autocorrelation tables.

Column heading	Contents
\mathbf{R}	Reference distance (R in equation (18))
shape	Shape autocorrelation
MEP(Tot)	Total MEP autocorrelation
MEP(+-)	MEP +/- autocorrelation
MEP(++)	MEP $+/+$ autocorrelation
MEP(--)	MEP -/- autocorrelation
IE(L)	IEL autocorrelation
EA(L)	EAL autocorrelation
Alpha(L)	Alpha(L) autocorrelation

The format of the columns is ($£ 8.2,2 \mathrm{x}, 8 \mathrm{~g} 15.6$)

Calculations with spherical-harmonic fits that use the TRANSLATE or TRANSLATE2 options, an additional block with the header

<TRANSLATED SPHERICAL HARMONIC FITS>

is printed. This block consists of nine sets of results (the original centre plus eight translated ones) for TRANSLATE and 16 for TRANSLATE2. The original centre is denoted by the header

Origin <shiftt><shifty><shiftz><RMSD>
("Origin :",3f12.4,412.6)')
followed by the fitted coefficients (7f12.6). The shifted points are defined in the same way, but are denoted "Point N"
("Point ",i2,":",3f12.4,f12.6)

3.6 The surface (.psf) file

The .psf file can be used to derive properties and descriptors from the ParaSurff results. It includes the coordinates and properties of the atoms, surface points and surface triangles in the following format. This format has been extended compared to that used by ParaSurf' $10^{\text {TM }}$.

Number of atoms

One line per atom with the atomic surface properties:

Atomic number, \boldsymbol{x}-coordinate, \boldsymbol{y}-coordinate, \boldsymbol{z}-coordinate, atomic surface area, $\mathbf{V}_{\max }, \mathbf{V}_{\min }, \mathrm{IE}_{\mathrm{L}}{ }^{\mathbf{m i n}}, \mathrm{EA}_{\mathbf{L}}{ }^{\text {max }}$, mean polarizability$\quad(i 2,3 £ 10.5, \pm 8.3,4 £ 8.2, \pm 8.3)$

Number of surface points, total number ($\mathbf{N}_{\text {models }}$) of surfaceintegral models (normal and binned)

The three-letter codes for the individual models

One line per point with the local properties:

$$
\begin{array}{|lr}
\hline \boldsymbol{x} \text {-coordinate, } \boldsymbol{y} \text {-coordinate, } \boldsymbol{z} \text {-coordinate, MEP, } \text { IE }_{\mathrm{L}}, \text { EA }_{\mathrm{L}}, \boldsymbol{\alpha}_{\mathrm{L}}, & \left(3 £ 10.5,3 £ 8.2, £ 8.4, i 6, \mathrm{~N}_{\text {models }}\right. \text { * } \\
\text { atom } \\
\text {, local value of each model } & (2 \mathrm{x}, \mathrm{~g} 12.4))
\end{array}
$$

(where atom L is the atom to which the surface point is assigned)

Number of surface triangles

One line per triangle with the ID of the triangle and the local properties:
point \#1, point \#2, point \#3, area, atom tri, $^{\text {,normal field }}$
(3i6,f10.5,i6, g12.4)
(where point \#1, 2 and 3 are the numbers of the surface points that make up the triangle and atomtri is the atom to which the triangle is assigned)

3.7 Anonymous SD (.asd) files

The .asd file contains only those blocks from the ParaSurf ${ }^{\text {TM }}$ output SD file that do not pertain directly to the 2D-molecular structure. Its purpose is to allow a full descriptions of the intermolecular bonding properties of the molecule without revealing its structure. The asd file can only be written from a ParaSurf ${ }^{\text {TM }}$ calculation using spherical-harmonic fitting. Its form is:

The SD header line	(A molecular ID number etc.)
The program identifier line	(The normal second line of the SD-file)

And the blocks defined by the following tags:

<SPHERICAL_HARMONIC_SURFACE>

<SPHERICAL_HARMONIC_MEP>
<SPHERICAL_HARMONIC_IE (1) >
<SPHERICAL_HARMONIC_EA (1) >
<SPHERICAL_HARMONIC_FIELD (N) >
<SPHERICAL_HARMONIC_ALPHA (1) >

<SHAPE HYBRIDS>

<MEP HYBRIDS>

<IE (L) HYBRIDS>

<EA (L) HYBRIDS>

<FIELD (N) HYBRIDS>

<ALPHA (L) HYBRIDS>

<STANDARD RIF>

<ParaSurf Descriptors>

(The molecular weight and the atomic surface properties are not included because they would allow the molecular formula to be reconstructed. The atoms assigned to each surface point or triangle are also not given.) The format of the descriptors is:

Molecular	$\mu, \mu_{\mathrm{D}}, \alpha, \mathrm{MW}, \mathrm{G}, \mathrm{A}, \mathrm{VOL}$
	("Molecular ",5f10.4,2f10.2)
MEP	
IE(I)	$I E_{L}^{\max }, I E_{L}^{\min }, \overline{I E_{L}}, \Delta I E_{L}, \sigma_{I E}^{2}, \gamma_{1}^{I E}, \gamma_{2}^{I E}, \int_{I E}(\text { IE (1) } \quad ", 5 f 10.2,2 f 10.4 / 12 \times, \mathrm{g} 12.6)$
EA(I)	$\begin{aligned} & E A_{L}^{\max }, E A_{L}^{\min }, \overline{E A_{L+}}, \overline{E A_{L-}}, \overline{E A_{L}}, \Delta E A_{L}, \sigma_{E A+}^{2}, \sigma_{E A-}^{2}, \sigma_{E A}^{2}, v_{E A}, \delta A_{E A}^{+}, \mathrm{A}_{E A}^{+}, \gamma_{1}^{E A}, \\ & \gamma_{2}^{E A}, \int_{E A} \end{aligned}$
Eneg(l)	$\left.\chi_{L}^{\text {max }}, \chi_{L}^{\text {min }}, \overline{\chi_{L}}, \Delta \chi_{L}, \sigma_{\chi}^{2}, \gamma_{1}^{\chi}, \gamma_{2}^{\chi}, \int_{\chi}{ }_{(\text {"Eneg (1) }} \quad ", 5 f 10.2,2 f 10.4 / 12 \times, \mathrm{g} 12.6\right)$
Hard(I)	$\eta_{L}^{\text {max }}, \eta_{L}^{\text {min }}, \eta_{L}, \Delta \eta_{L}, \sigma_{\eta}^{2}, \gamma_{1}^{\eta}, \gamma_{2}^{\eta}, \int_{\eta}$
Alpha(I)	$\alpha_{L}^{\max }, \alpha_{L}^{\text {min }}, \overline{\alpha_{L}}, \Delta \alpha_{L}, \sigma_{\alpha}^{2}, \gamma_{1}^{\alpha}, \gamma_{2}^{\alpha}, \int_{\alpha}$
F_{N}	$\begin{array}{r} F_{N}^{\max }, F_{N}^{\min }, \Delta F_{N}, \overline{F_{N}}, \sigma_{F}^{2}, \sigma_{F+}^{2}, \sigma_{F-}^{2}, V_{F}, \gamma_{1}^{F_{N}}, \gamma_{2}^{F_{N}}, \int_{F_{N}}, \int_{F_{N}}^{+}, \int_{F_{N}}^{-} \\ (\text {"Field desc", } 7 \mathrm{ff10} 4 / 4 / \mathrm{Na} \end{array}$

Jobs that include Shannon entropy give two extra sets of descriptors:

| Shannon(i) | $H_{i n}^{\max }, H_{i n}^{\min }, \overline{H_{i n}}, \sigma_{H_{i n}}^{2} \int_{H_{i n}}$ | |
| :--- | :--- | ---: | :--- |
| Shannon(e) | $H_{e x}^{\max }, H_{e x}^{\min }, \overline{H_{e x}}, \sigma_{H_{e x}}^{2}, \int_{H_{e x}}$ | ("Shannon(i) $\quad ", 4 f 10.4, f 10.2, f 10.4$) |

3.7.1 Optional blocks

For calculations that include surface autocorrelations, these are written in the following blocks:

<SURFACE AUTOCORRELATION PARAMETERS>

The number of autocorrelation points	$($ "ncorr $\quad=$ ", i6)	
The lower end of the autocorrelation range	$($ "rmin	$=$ ",f10.6)
The bin size	$($ "dcorr	$=$ ", f10.6)

This block then contains a table that gives all the autocorrelations as a table with the following headings:

Table 8: Column headings and definitions for the autocorrelation table in the output SDF file.

Table 8: \quad Column headings and definitions for the autocorrelation table in the output SDF file.
Column heading
R
shape
MEP(Tot)
Reference distance (R in equation (18))
MEP(+-)
MEP(++)
MEP(--)
IE(L)
EA(L)
Thape autocorrelation
MEP autocorrelation
MEP +/- autocorrelation

The format of the columns is ($\mathrm{f} 8.2,2 \mathrm{x}, 8 \mathrm{~g} 15.6$)

3.8 Grid calculations with ParaSurf ${ }^{\text {T"W }}$

3.8.1 User-specified Grid

The command

```
parasurf <filename> estat=multi grid=grid.dat
```

instructs ParaSurf ${ }^{\text {Tw }}$ to read a set of Cartesian coordinates from the file grid.dat and to calculate the $\log _{10}$ of the electron density, the four local properties and the electric field (density, MEP, IEL, EAL, $\alpha \mathrm{L}, \mathrm{dv} / \mathrm{dx}, \mathrm{dv} / \mathrm{dy}$, $d v / \mathrm{dz}$). The format of the file grid.dat (which must be in the same directory as the input) is one line per atom containing the x, y and z coordinates in free format, comma-separated, maximum line length 80 with no trailing comma. For instance, the following grid file:

```
-8.01100 , -13.72910, -7.91090
-8.01100 , -13.72910 , -6.91090
-8.01100 , -13.72910 , -5.91090
-8.01100 , -13.72910 , -4.91090
-8.01100 , -13.72910 , -3.91090
-8.01100 , -13.72910 , -2.91090
-8.01100 , -13.72910 , -1.91090
-8.01100 , -13.72910 , -0.91090
-8.01100 , -13.72910 , 0.08910
-8.01100 , -13.72910, 1.08910
```

Figure 20 Sample grid file.
gives the output shown in Figure 21 (page 72).
The name and the extension (if any) of the grid file are free. Only the output file is written. The units of the local properties are those used in the normal output (i.e. V, IEL, and EAL in kcal $\mathrm{mol}^{-1}, \alpha \mathrm{~L}$ in Ångstrom ${ }^{3}$.
<> ParaSurf'1 , Revision A1
$<>$ Copyright (c) 2006,2007,2008,2009,2010,2011 Friedrich-Alexander-
Universitaet Erlangen-Nuernberg and Cepos InSilico Ltd.
All rights reserved.
<> Input = jnk v.sdf
<<>> Molecule 1 of
<> Program options :
Calculating local properties using grid file grid.txt
Using multipole electrostatics
<> AM1 calculation for Lead compound
$\log ($ rho $)$

$\begin{array}{cc}x & y \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910 \\ -8.01100 & -13.72910\end{array}$
əurtz ndગ spuosəs LT•0
<> ParaSurf used

$\begin{array}{cc}d v / d x & d v / d y \\ 0.0538 & -0.0456 \\ 0.0490 & -0.0709 \\ 0.0374 & -0.1063 \\ 0.0172 & -0.1529 \\ -0.0121 & -0.2094 \\ -0.0481 & -0.2697 \\ -0.0843 & -0.3224 \\ -0.1123 & -0.3539 \\ -0.1249 & -0.3545 \\ -0.1205 & -0.3247\end{array}$ Eneg (1) Hard (1)

 İ

拰

Figure 21 Sample grid output file.

3.8.2 Automatic grids

ParaSurf ${ }^{\text {T" }}$ can generate grids automatically for lead compounds in ComFA ${ }^{\circledR}$-like procedures. The grid=auto option generates a grid around the molecule (with a $4 \AA$ margin around the positions of the atoms in each direction) and includes all points for which the electron density is lower than 10^{-2} (i.e. for points outside the molecule). The spacing of the grid is set to a default value of $1.0 \AA$, but can be set to any value up to a maximum of $2.0 \AA$ by the command-line argument lattice $=n . n$, which sets the lattice spacing to $n . n \AA$. The grid thus generated is output (with the values of the local properties analogously to a calculation that uses an predefined grid and can be used for other molecules that have been aligned with the lead. An additional output file named <filename>_p.grid

3.9 The SIM file format

SIM files must reside in the ParaSurf ${ }^{m \mathrm{~m}}$ executable directory and are strictly fixed format. SIM files must be called <filename>. sim, where <filename> must have exactly three characters. A sample SIM file for a single model (the free energy of solvation in octanol) is shown in Figure 22:

```
> <OPTIONS>
surf=cube
fit=isod
estat=multi
iso=0.05
> <MODELS>
    1 3
> <DGO>
    3 1.61058
DeltaG(n-Octanol)
kcal/mol
-0.01107 F 1.0 0.0 0.0 1.0 0.0 0.0 1.0
1.6793d-9 F 1.0 0.0 3.0 0.0 0.0
-2.0407d-10 T 1.0 1.0 0.0 1.0 
```

Figure 22 Sample surface-integral model (SIM) file.

The first line, the OPTIONS tag, is compulsory and takes the form:

<OPTIONS>

The second to fifth lines, also compulsory in the order shown above, give the ParaSurf ${ }^{\text {T"' }}$ options to be used for the surface-integral model. These options are given in lower case and override conflicting command-line options.

Line 6 must be the MODELS tag with the format

Line 7 contains the two integers (Nmodels and Maxterms) that define the number of models given in the file and the maximum number of terms for any one model. The format is:

```
Nmodels
```

The remainder of the SIM file consists of Nmodels blocks, each of which defines a single model and has the following format:

Model identifier tag

<MOD>

 where MOD is a three-letter unique identifier for the model.| Nterms (the number of terms in the model), constant (the constant in the
 regression equation) | |
| :--- | ---: |
| Model name (for output, maximum 20 characters) | $(\mathrm{i} 4, \mathrm{~g} 12.6)$ |
| Units of the property P (for output, maximum 20 characters) | |
| Nterms lines, one per term, giving the definition of the model: | |
| Coeff Abs man o p q \boldsymbol{m} | |

where each term is defined as:

$$
\left[M E P^{m} \cdot I E_{L}^{n} \cdot E A_{L}^{o} \cdot \alpha_{L}^{p} \cdot \eta_{L}^{q}\right]^{r} \text { if } A \mathrm{bs} \text { is false and }\left[\left|M E P^{m} \cdot I E_{L}^{n} \cdot E A_{L}^{o} \cdot \alpha_{L}^{p} \cdot \eta_{L}^{q}\right|\right]^{r} \text { if } A b s \text { is true. }
$$

SIM files are only intended to be created by expert users.

3.10 Output tables

The command-line argument "table=<filename>" requests that the 41 descriptors written in the <ParaSurf DESCRIPTORS> block of the ParaSurf ${ }^{\text {TM }}$ SD-file output are written, one line per molecule, in the file <filename>. If <filename> already exists, the line for the new molecules will be appended, otherwise a new file will be created and a header line including designations of the descriptors will be written as the first line. All lines in the table file are comma-separated with all blanks (including those in the Molecule ID) removed. The Descriptors in order are:

Table 9: Definitions and order of the descriptors printed to the descriptor table if requested.

Column Header	Symbol	Descriptor
MoIID	Molecular ID taken from the first line of the entry for each molecule with all blanks eliminated.	
dipole	μ	Dipole moment
dipden	μ_{D}	Dipolar density

Column Header Symbol Descriptor

polarizability	α	Molecular electronic polarizability
MWt	MW	Molecular weight
globularity	G	Globularity
totalarea	A	Molecular surface area
volume	VOL	Molecular volume
MEPmax	$\mathrm{V}_{\text {max }}$	Maximum (most positive) MEP
MEPmin	$\mathrm{V}_{\text {min }}$	Minimum (most negative) MEP
meanMEP+	\bar{V}_{+}	Mean of the positive MEP values
meanMEP-	\bar{V}_{-}	Mean of the negative MEP values
meanMEP	\bar{V}	Mean of all MEP values
MEPrange	ΔV	MEP-range
MEPvar+	σ_{+}^{2}	Total variance in the positive MEP values
MEPvar-	σ_{-}^{2}	Total variance in the negative MEP values
MEPvartot	$\sigma_{\text {tot }}^{2}$	Total variance in the MEP
MEPbalance	v	MEP balance parameter
var*balance	$\sigma_{\text {tot }}^{2} v$	Product of the total variance in the MEP and the balance parameter
MEPskew	γ_{1}^{V}	Skewness of the distribution of the MEP
MEPkurt	γ_{2}^{V}	Kurtosis of the distribution of the MEP
MEPint	\int_{V}	Integral of the MEP*area over the surface
IELmax	$I E_{L}^{\text {max }}$	Maximum value of the local ionization energy
IELmin	$I E_{L}^{\text {min }}$	Minimum value of the local ionization energy
IELbar	$\overline{I E_{L}}$	Mean value of the local ionization energy
IELrange	$\Delta I E_{L}$	Range of the local ionization energy
IELvar	$\sigma_{I E}^{2}$	Variance in the local ionization energy
IELskew	$\gamma_{1}^{I E}$	Skewness of the distribution of IE(L)
IELkurt	$\gamma_{2}^{\text {IE }}$	Kurtosis of the distribution of IE(L)
IELint	$\int_{I E}$	Integral of the IE(L)*area over the surface
EALmax	$E A_{L}^{\text {max }}$	Maximum of the local electron affinity
EALmin	$E A_{L}^{\text {min }}$	Minimum of the local electron affinity
EALbar+	$\overline{E A_{L+}}$	Mean of the positive values of the local electron affinity
EALbar-	$\overline{E A_{L-}}$	Mean of the negative values of the local electron affinity
EALbar	$\overline{E A_{L}}$	Mean value of the local electron affinity

Column Header	Symbol	Descriptor
EALrange	$\Delta E A_{L}$	Range of the local electron affinity
EALvar+	$\sigma_{E A+}^{2}$	Variance in the local electron affinity for all positive values
EALvar-	$\sigma_{E A}^{2}$	Variance in the local electron affinity for all negative values
EALvartot	$\sigma_{\text {EAtot }}^{2}$	Sum of the positive and negative variances in the local electron affinity
EALbalance	$v_{E A}$	Local electron affinity balance parameter
EALfraction+	$\delta \mathrm{A}_{E A}^{+}$	Fraction of the surface area with positive local electron affinity
EALarea+	$\mathrm{A}_{\text {EA }}^{+}$	Surface area with positive local electron affinity
EALskew	$\gamma_{1}^{E A}$	Skewness of the distribution of the MEP
EALkurt	$\gamma_{2}^{E A}$	Kurtosis of the distribution of the MEP
EALint	$\int_{E A}$	Integral of the MEP*area over the surface
POLmax	$\alpha_{L}^{\text {max }}$	Maximum value of the local polarizability
POLmin	$\alpha_{L}^{\text {min }}$	Minimum value of the local polarizability
POLbar	$\overline{\alpha_{L}}$	Mean value of the local polarizability
POLrange	$\Delta \alpha_{L}$	Range of the local polarizability
POLvar	σ_{α}^{2}	Variance in the local polarizability
POLskew	γ_{1}^{α}	Skewness of the distribution of the local polarizability
POLkurt	γ_{2}^{α}	Kurtosis of the distribution of the local polarizability
POLint	\int_{α}	Integral of the $\alpha(\mathrm{L})^{*}$ area over the surface
ENEGmax	$\chi_{L}^{\text {max }}$	Maximum of the local electronegativity
ENEGmin	$\chi_{L}^{\text {min }}$	Minimum of the local electronegativity
ENEGbar	$\overline{\chi_{L}}$	Mean value of the local electronegativity
ENEGrange	$\Delta \chi_{L}$	Range of the local electronegativity
ENEGvar	σ_{x}^{2}	Variance in the local electronegativity
ENEGskew	γ_{1}^{χ}	Skewness of the distribution of the local electronegativity
ENEGkurt	γ_{2}^{χ}	Kurtosis of the distribution of the local electronegativity
ENEGint	\int_{x}	Integral of the $\chi(\mathrm{L})^{*}$ area over the surface
HARDmax	$\eta_{L}^{\text {max }}$	Maximum of the local electronegativity
HARD min	$\eta_{L}^{\text {min }}$	Minimum of the local electronegativity
HARDbar	η_{L}	Mean value of the local electronegativity
HARDrange	$\Delta \eta_{L}$	Range of the local electronegativity
HARDvar	σ_{η}^{2}	Variance in the local electronegativity
HARDskew	γ_{1}^{n}	Skewness of the distribution of the local electronegativity

Column Header	Symbol	Descriptor
HARDkurt	γ_{2}^{η}	Kurtosis of the distribution of the local electronegativity
HARDint	\int_{η}	Integral of the $\chi(\mathrm{L})^{*}$ area over the surface
FNmax	$F_{N}^{\text {max }}$	Maximum value of the field normal to the surface
FNmin	$F_{N}^{\text {min }}$	Minimum value of the field normal to the surface
FNrange	ΔF_{N}	Range of the field normal to the surface
FNmean	$\overline{F_{N}}$	Mean value of the field normal to the surface
FNvartot	σ_{F}^{2}	Variance in field normal to the surface
FNvar+	σ_{F+}^{2}	Variance in the field normal to the surface for all positive values
FNvar-	σ_{F-}^{2}	Variance in the field normal to the surface for all negative values
FNbal	V_{F}	Normal field balance parameter
FNskew	$\gamma_{1}^{F_{N}}$	Skewness of the field normal to the surface
FNkurt	$\gamma_{2}^{F_{N}}$	Kurtosis of the field normal to the surface
FNint	$\int_{F_{N}}$	Integrated field normal to the surface over the surface
FN+	$\int_{F_{N}}^{+}$	Integrated field normal to the surface over the surface for all positive values
FN-	$\int_{F_{N}}^{-}$	Integrated field normal to the surface over the surface for all negative values
FNabs	$\int_{\left\|F_{N}\right\|}$	Integrated absolute field normal to the surface over the surface
aSymbols as used in section 0		

If the Shannon entropy is calculated, the following additional descriptors are added:

Table 10: Additional descriptors (Shannon entropy)

Column Header	Symbol	Descriptor
SHANImax	$H_{\text {in }}^{\text {max }}$	Maximum internal Shannon entropy
SHANImin	$H_{\text {in }}^{\text {min }}$	Minimum internal Shannon entropy
SHANIvar	$\sigma_{H(i n)}^{2}$	Variance of the internal Shannon entropy
SHANIbar	$\bar{H}_{\text {in }}$	Mean internal Shannon entropy
SHANItot	$H_{\text {in }}^{\text {tot }}$	Total internal Shannon entropy
and if the external Shannon entropy is also calculated		
SHANEmax	$H_{e x}^{\text {max }}$	Maximum external Shannon entropy
SHANEmin	$H_{e x}^{\text {min }}$	Minimum external Shannon entropy

Column Header	Symbol	Descriptor
SHANEvar	$\sigma_{H(e x)}^{2}$	Variance of the external Shannon entropy
SHANEbar	$\bar{H}_{e x}$	Mean external Shannon entropy
SHANEtot	$H_{e x}^{\text {tot }}$	Total external Shannon entropy
SHANEtot	$H_{e x}^{\text {tot }}$	Total external Shannon entropy

3.11 Binned SIM descriptor tables

If the option "desfile=<filename>" is used, a user-defined file with binned SIM-descriptors is written. The bin limits are taken from installed models using the command-line option "desmodel=<code>", where <code> is the model code taken from Table 3. If the table file does not exist, a new one with a header line will be written, otherwise the results for the current molecule will be appended. The descriptors are denoted by a two- or three-letter code to denote the property followed by the number of the descriptor (currently 1-12). The letter codes are:

Table 11: Letter codes (Binned SIM descriptor tables)

Code	Property	Code	Property	Code	Property
MEP	MEP	IEL	IE_{L}	EAL	$E A_{L}$
POL	α_{L}	FN	F_{N}	HD	η_{L}
ENG	χ L	MI	$\mathrm{MEP} \times \mathrm{IE}$ L	MA	$M E P \times E A_{L}$
MP	MEP $\times \alpha_{L}$	MF	$\mathrm{MEP} \times \mathrm{F}_{\mathrm{N}}$	MH	$\mathrm{MEP} \times \eta_{\llcorner }$
ME	$\mathrm{MEP} \times \chi\llcorner$	IA	$I E_{L} \times \mathrm{EA}_{L}$	IP	$1 E_{L \times} \times \alpha_{L}$
IF	$\mathrm{IE} \times \times \mathrm{F}_{\mathrm{N}}$	IH	$I E_{L} \times \eta_{L}$	IE	$1 E_{L \times} \chi_{L}$
AP	$E A_{L} \times \alpha_{L}$	AF	$E A_{L} \times \mathrm{F}_{\mathrm{N}}$	AH	$E A_{\llcorner } \times \eta_{L}$
AE	$E A_{L} \times \chi_{L}$	PF	$\alpha_{L} \times \mathrm{F}_{\mathrm{N}}$	PH	$\alpha_{L} \times \eta_{L}$
PE	$\alpha_{\llcorner } \times \chi_{\llcorner }$	FH	$\mathrm{F}_{\mathrm{N} \times \eta_{\mathrm{L}}}$	FE	$\mathrm{F}_{\mathrm{N} \times \chi_{\mathrm{L}}}$
HE	$\eta_{L \times} \times \chi_{L}$				

The descriptor file is comma-separated.

3.12 Autocorrelation fingerprint and similarity tables

If the option "aclist=<filename>" is used, a user-defined file with the autocorrelation fingerprint is written. If this file does not exist, it is created and the header line written, otherwise entries are appended. The ASCII file is comma-separated and contains the molecular identifier followed by 448 binned autocorrelation values in the order Shape, MEP(+-), MEP(++), MEP(--), IE(L), EA(L), Alpha(L) (64 bins each).

The option "aslist=<filename>" requests a user-defined file with the autocorrelation similarities to the lead compound defined using the "autocorr = <filename>" keyword. If this file does not exist, it is created and the header line written, otherwise entries are appended. The ASCII file is has a fixed format. The header line is

```
Molid Shape MEP(tot) MEP(+-) MEP(++)
MEP(--) IE(1) EA(1) Alpha(l) Fingerprint
```

and the similarities are written in format (a20,9f10.4). If the molecular identifier is longer than 20 characters, it will be truncated. The "Fingerprint" similarity considers all 448 autocorrelation values (but see 1.15.

3.13 Shared files

The Vhamil.par and SIM files are accessed in shared, read-only mode so that multiple ParaSurf ${ }^{\text {TM }}$ jobs can access the same files.

4 TIPS FOR USING PARASURF' $11^{\text {™ }}$

4.1 Choice of surface

ParaSurf ${ }^{\text {T"M }}$ was originally written to use isodensity surfaces. However, calculations that use a solventexcluded surface are very much faster than their equivalents with isodensity surfaces and will usually give comparable results. Surface-integral models may benefit from using a solvent-excluded surface with a solvent radius of $0.5-1.0 \AA$ as this appears to be the most relevant surface for many physical properties. Surfaces fitted to spherical-harmonic expansions require more CPU-time than marchingcube surfaces but are essential for fast numerical applications such as ParaFit ${ }^{\text {t"M }}$. Again, solventexcluded shrink-wrap surfaces are faster to calculate than their isodensity equivalents.

4.2 ParaSurf ${ }^{\text {Tw }}$ and ParaFit ${ }^{\text {TM }}$

ParaFit ${ }^{\text {tw }}$ is Cepos InSilico's very fast shape-matching program that is based on spherical-harmonic expansions generated by ParaSurf ${ }^{\text {™ }}$. ParaFit ${ }^{\text {tw" }}$ can be used to overlay molecules with a common scaffold by defining the centre to be used for generating the spherical-harmonic fit in ParaSurf ${ }^{T m}$ in the input SDF-file (see 1.1.4 and 2.2)

4.3 QSAR using grids

As outlined in 3.8.2, ParaSurf ${ }^{\text {T"' }}$ can generate a grid for the lead molecule automatically that can then be used for a set of aligned (e.g. with ParaFit ${ }^{\text {t"M }}$) molecules for grid-based QSAR. This procedure has proven to be especially effective for test datasets, especially if the molecules are aligned to a common scaffold, as outlined in 4.2.

The automatic grid generated for a lead molecule is now written to the file <filename>_p.grid for use with the remainder of the dataset.

5 SUPPORT

5.1 Contact

Questions regarding ParaSurf ${ }^{\text {T" }}$ should be sent directly to:
support@ceposinsilico.com

5.2 Error reporting

Some of the routines in ParaSurf ${ }^{\text {m" }}$ may detect error conditions that have not yet been encountered in our tests. In this case, an error message will be printed requesting that the input and output files be sent to the programming team at the above e-mail address. We realize that this will not always be possible for confidentiality reasons, but if the details can be sent, we will be able to treat the exception and improve the program.

5.3 CEPOS InSilico Ltd.

Computer-Chemie-Centrum (CCC)
Nägelsbachstr. 25
91052 Erlangen
Germany
support@ceposinsilico.com
Tel. +49-9131-9704910
Fax. +49-9131-9704911
www.ceposinsilico.com/contact

6 LIST OF TABLES

Table 1: The descriptors calculated by ParaSurf ${ }^{\text {TM }}$ 17
Table 2: The 28 local properties and products thereof used to construct binned area descriptors. 23
Table 3: Local hydrophobicity models and their model codes (all models use the single CORINA-derived conformations and are trained with the "full" dataset. 24
Table 4: ParaSurf ${ }^{\text {™ }}$ command-line options 30
Table 5: ParaSurf ${ }^{\text {Tm }}$ input and output files 38
Table 6: Hamiltonians and the available electrostatic and polarizability models. 40
Table 7: Column headings and definitions for autocorrelation tables. 67
Table 8: Column headings and definitions for the autocorrelation table in the output SDF file. 70
Table 9: Definitions and order of the descriptors printed to the descriptor table if requested. 74
Table 10: Additional descriptors (Shannon entropy) 77
Table 11: Letter codes (Binned SIM descriptor tables) 78

7 LIST OF FIGURES

Figure 1 Marching-cube (left) and shrink-wrap (right, fitted to a spherical-harmonic approximation) isodensity surfaces calculated with ParaSurf ${ }^{\text {TM }}$ using the default settings.

Figure 2 2D-representation of a solvent-excluded surface. 8
Figure 3 The solvent-accessible surface is obtained by rolling a spherical "solvent molecule".
Figure 4 2D-representation of a molecular surface with single-valued (A and B) and multiply valued (C and D) radial vectors from the centre.

Figure 5 2D-representation of the shrink-wrap algorithm. The algorithms scans along the vector from point a towards the centre of the molecule until the electron density reaches the preset value (point b). The algorithm results in enclosures (marked yellow) for multi-valued radial vectors.

Figure 6 Spherical-harmonic approximation of a shrink-wrap isodensity surface. Note the areas where the surface does not follow the indentations of the molecule.

Figure 7 Spherical-harmonic approximation of a shrink-wrap isodensity surface. Note the areas where the surface does not follow the indentations of the molecule.

Figure 8 Schematic representation of the planes and hinge area used to determine the centre for sphericalharmonic expansions.

Figure 9 The eight autocorrelation functions calculated using the AM1 Hamiltonian for captopril.
Figure 10a A sample <FRAGMENTS> input block.
Figure 11 The fragments defined in the SDF input example.
Figure 12 ParaSurf $11^{\text {TM }}$ output for the phenyl fragment defined above.
Figure 13 Surfaces calculated for the individual fragments, colour coded according to the MEP in kcal mol${ }^{-1}$. The fragments (clockwise from the top right) are methoxy1, methoxy2, methoxy3, thymine, phenyl and methylene.

Figure 14 The headers and titles, atomic coordinates and bond definitions from a VAMP .sdf file. The format follows the MDL definition.

Figure 15: ParaSurf ${ }^{\text {Tw }}$ output for trimethoprim, 1, using a spherical-harmonic surface.
Figure 16 ParaSurf ${ }^{T M}$ output for trimethoprim using a marching-cube surface.
Figure 17 Shannon entropy section of the ParaSurf ${ }^{\circledR}$ output for trimethoprim, 1, using a marching-cube isodensity surface.

Figure 18 Shannon entropy section of the ParaSurf ${ }^{\circledR}$ output for trimethoprim, 1, using a marching-cube isodensity surface.

Figure 19 Similarity output using autocorrelation functions. The lead molecule is captopril, which is defined in captopril_p.sdf using the SMILES string.
$\begin{array}{ll}\text { Figure } 20 \text { Sample grid file. } & 71\end{array}$
Figure 21 Sample grid output file. 72
Figure 22 Sample surface-integral model (SIM) file. 73

8 REFERENCES

T. Clark, A. Alex, B. Beck, F. Burkhardt, J. Chandrasekhar, P. Gedeck, A. H. C. Horn, M. Hutter, B. Martin, G. Rauhut, W. Sauer, T. Schindler, and T.Steinke, VAMP 8.2, Erlangen 2002; available from Accelrys Inc., San Diego, USA (http://www.accelrys.com/products/datasheets/vamp.pdf).
J. J. P. Stewart, MOPAC2000, 1999, Fujitsu, Ltd, Tokyo, Japan. MOPAC 6.0 was once available as: J. J. P. Stewart, QCPE \# 455, Quantum Chemistry Program Exchange, Bloomsville, Indiana, 1990.
J. H. van Drie, "Shrink-wrap" surfaces: A new method for incorporating shape into pharmacophoric 3D database searching, J. Chem. Inf. and Comp. Sci., 1997, 37, 38-41; J. H. van Drie and R. A. Nugent, Addressing the challenges of combinatorial chemistry: 3D databases, pharmacophore recognition and beyond, SAR and QSAR in Env. Res., 1998, 9, 1-21; J. Erickson, D. J. Neidhart, J. van Drie, D. J. Kempf, X. C. Wang, D. W. Norbeck, J. J. Plattner, J. W. Rittenhouse, M. Turon, N. Wideburg, et al., Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease, Science, 1990, 249, 527-533.
W. Heiden, T. Goetze, and J. Brickmann, Fast generation of molecular surfaces from 3D data fields with an enhanced "marching cube" algorithm. J. Comput. Chem. 1993, 14, 246-50.
D. W. Ritchie und G. J. L. Kemp, Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces, J. Comput. Chem., 1999, 20, 383.

Chemical Applications of Atomic and Molecular Electrostatic Potentials. Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems, Politzer P; Truhlar DG; (Eds), Plenum Press, New York, NY, 1981.
P. Sjoberg, J. S. Murray, T. Brinck and P. A. Politzer, Average local ionisation energies on the molecular surfaces of aromatic systems as guides to chemical reactivity, Can. J. Chem. 1990, 68, 1440-3.
B. Ehresmann, B. Martin, A. H. C. Horn and T. Clark, Local molecular properties and their use in predicting reactivity, J. Mol. Model., 2003, 9, 342-347.
B. Ehresmann, M. J. de Groot, A. Alex and T. Clark, New Molecular Descriptors Based on Local Properties at the Molecular Surface and a Boiling-Point Model Derived from Them., J. Chem. Inf. Comp. Sci., 2004, 43, 658-668.
B. Ehresmann, M. J. de Groot and T. Clark, A Surface-Integral Solvation Energy Model : The Local Solvation Energy, J. Chem. Inf. Comp. Sci., 2005, 45, 1053-1060.
J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173-1213.
M. Mühlbacher, A. El Kerdawy, M. Hennemann and T. Clark, 2011 submitted to J. Chem. Inf. Model.
C. Kramer, B. Beck and T. Clark, A Surface-Integral Model for logPow, J. Chem. Inf. Model., 2010, 50, 429-436.
C. Kramer, T. Heinisch, T. Fligge, B. Beck, and T. Clark, A Consistent Kinetic Solubility Dataset for Earlyphase Drug Discovery, ChemMedChem, 2009, 4, 1529-1536.
L. M. Loew and W. R. MacArthur, A molecular orbital study of monomeric metaphosphate. Density surfaces of frontier orbitals as a tool in assessing reactivity, J. Am. Chem. Soc.,1977, 99,1019-25.
B. S. Duncan and A. J. Olson, Approximation and Characterization of Molecular Surfaces; Scripps Insitute, San Diego, California, 1995.
J.-H. Lin and T. Clark, An analytical, variable resolution, complete description of static molecules and their intermolecular binding properties, J. Chem. Inf. Model., 2005, 45, 1010-1016.
G. Rauhut and T. Clark, Multicenter Point Charge Model for High Quality Molecular Electrostatic Potentials from AM1 Calculations, J. Comput. Chem., 1993, 14, 503 - 509.
B. Beck, G. Rauhut and T. Clark, The Natural Atomic Orbital Point Charge Model for PM3: Multipole Moments and Molecular Electrostatic Potentials, J. Comput. Chem., 1994, 15, 1064 - 1073.
M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899-4907; 4907-4917; MNDO, W. Thiel, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer,III and P. R. Schreiner (Eds), Wiley, Chichester, 1998, 3, 1599.
M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, J. Am. Chem. Soc. 1985, 107, 3902-3909;
A. J. Holder, AM1, Encyclopedia of Computational Chemistry, Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer, H. F., III; Schreiner, P. R. (Eds), Wiley, Chichester, 1998, 1, 8-11.
J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209-220; 221-264; PM3, J. J. P. Stewart, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer,III and P. R. Schreiner (Eds), Wiley, Chichester, 1998, 3, 2080.
W. Thiel and A. A. Voityuk, Extension of the MNDO formalism to d orbitals: integral approximations and preliminary numerical results, Theoret. Chim. Acta, 1992, 81, 391-404;
W. Thiel and A. A. Voityuk, Extension of MNDO to d orbitals: parameters and results for the halogens, 1996, 93, 315-315;
W. Thiel and A.A. Voityuk, Extension of MNDO to d orbitals: parameters and results for silicon, J. Mol. Struct., 1994, 313, 141-154;
W. Thiel and A. A. Voityuk, Extension of MNDO to d Orbitals: Parameters and Results for the SecondRow Elements and for the Zinc Group, J. Phys. Chem., 1996, 100, 616-626;
MNDO/d, W. Thiel, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III and P. R. Schreiner (Eds), Wiley, Chichester, 1998, 3, 1604.
P. Winget, C. Selçuki, A. H. C. Horn, B. Martin and T. Clark, AM1* Parameters for Phosphorous, Sulfur and Chlorine, J. Mol. Model. 2003, 9, 408-414.
A. H. C. Horn, J.-H. Lin and T. Clark, A Multipole Electrostatic Model for NDDO-based Semiempirical Molecular Orbital Methods, Theor. Chem. Accts, 2005, 113, 159-168.
T. Clark, The Local Electron Affinity for Non-Minimal Basis Sets, J. Mol. Model., 2010, 16, 1231-1238.
G. Schürer, P. Gedeck, M. Gottschalk and T. Clark, Accurate Parametrized Variational Calculations of the Molecular Electronic Polarizability by NDDO-Based Methods, Int. J. Quant. Chem., 1999, 75, 17.
D. Rinaldi and J.-L. Rivail, Calculation of molecular electronic polarizabilities. Comparison of different methods, Theor. Chim. Acta 1974, 32, 243-251; J.-L. Rivail and D. Rinaldi, Variational calculation of multipole electric polarizabilities, Comptes Rendus, Serie B: Sciences Physiques 1976, 283, D. Rinaldi and J.-L. Rivail, Molecular polarizabilities and dielectric effect of the medium in the liquid state. Theoretical study of the water molecule and its dimers, Theor. Chim. Acta 1973, 32, 57.
B. Martin, P. Gedeck and T. Clark, An Additive NDDO-Based Atomic Polarizability Model. Int. J. Quant. Chem., 2000, 77, 473-497.
R. J. Abraham, B. D. Hudson, M. W. Kermode and J. R. Mines, J. Chem. Soc., Faraday Trans. I, 1988, 84, 1911-1917.
1 Tomasi, B. Mennucci and R. Cammi, Quantum Mechanical Continuum Solvation Models, Chem. Rev., 2005, 105, 2999.
C. J. Cramer, G. R. Famini and A. H. Lowrey, Acc. Chem. Res., 1993, 26, 599 - 605.
A. Y. Meyer, The Size of Molecules, Chem. Soc. Rev., 1986, 15, 449-475.
J. S. Murray and P. Politzer. Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases, J. Mol. Struct. (Theochem), 1998, 425, 107-114;
J. S. Murray, S. Ranganathan and P. Politzer, Correlations between the solvent hydrogen bond acceptor parameter β and the calculated molecular electrostatic potential, J. Org. Chem., 1991, 56, 3734-3747; P. Politzer, P. Lane, J. S. Murray and T. Brinck, Investigation of relationships between solute molecule surface electrostatic potentials and solubilities in supercritical fluids, J. Phys. Chem., 1992, 96, 79387643;
J. S. Murray, P. Lane, T. Brinck, K. Paulsen, M. E. Grice and P. Politzer, Relationships of critical constants and boiling points to computed molecular surface properties, J. Phys. Chem., 1993, 97, 93699373.;
T. Brinck, J. S. Murray and P. Politzer, Quantitative determination of the total local polarity (charge separation) in molecules, Mol. Phys., 1992, 76, 609.

CORINA, Molecular Networks GmbH, Erlangen;
http://www.molecular-networks.com/products/corina
http://logkow.cisti.nrc.ca/logkow/
C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Chicago, 1949.

Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind Database: Methodologies and updates, J. Med. Chem., 2005; 48(12); 4111-4119; Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind Database: Collection of Binding Affinities for Protein-Ligand Complexes with Known Three-Dimensional Structures, J. Med. Chem., 2004; 47(12); 2977-2980; http://www.pdbbind.org/
M. Wagener, J. Sadowski and J. Gasteiger, Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks, J. Am. Chem. Soc., 1995, 117, 7769-7775.
L. Mavridis, B. D. Hudson and D. W. Ritchie, Toward high throughput virtual screening using spherical harmonic surface representations, J. Chem. Inf. Model., 2007, 47, 1787-1796.
A. Jakobi, H. Mauser and T. Clark, ParaFrag-an approach for surface-based similarity comparison of molecular fragments, J. Mol. Model., 2008, 14, 547-558.
M. Hennemann and T. Clark, A QSPR-Approach to the Estimation of the pKHB of Six-Membered Nitrogen-Heterocycles using Quantum Mechanically Derived Descriptors, J. Mol. Model. 2002, 8, 95-101.
M. Hennemann, A. Friedl, M. Lobell, J. Keldenich, A. Hillisch, T. Clark and A. H. Göller, CypScore: Quantitative Prediction of Reactivity toward Cytochromes P450 Based on Semiempirical Molecular Orbital Theory, ChemMedChem, 2009, 4, 657-669.
M. Connelly, The molecular surface package, J. Mol. Graph., 1992, 11, 139-141.
A. Bondi, van der Waals Volumes and Radii, J. Phys. Chem., 1964, 68, 441-451.
http://www.mdl.com/solutions/white_papers/ctfile_formats.jsp
W. Thiel, The MNDOC method, a correlated version of the MNDO model, J. Am. Chem. Soc., 1981, 103, 1413-1420.

