

FREE ACADEMIC VERSION

Impressum

Copyright	© 2011 by CEPOS InSilico Ltd. The Old Vicarage 132 Bedford Road Kempston BEDFORD, MK42 8BQ United Kingdom www.ceposinsilico.com
Manual	Timothy Clark
Layout	www.eh-bitartist.de

TABLE OF CONTENTS

PROGRAM HISTORY

	6
1 1 Changes relative to ParaSurf ∕09™	7
1.1.1 Local electron affinity for AM1* and other Hamiltonians with d-orbitals polarisation functions	as 7
1.1.2 The PM6 Hamiltonian	7
1.1.3 Second generation surface-integral models; local hydrophobicity	7
1.1.4 Molecular fragments	7
1.1.5 Atom-centred descriptors	7
1.2 Isodensity surfaces	7
1.3 Solvent-excluded surfaces	7
1.4 Solvent-accessible surfaces	8
1.5 Shrink-wrap surface algorithm	8
1.6 Marching-cube algorithm 1.7 Spherical-barmonic fitting	10
1.8 Local properties	12
1.8.1 Molecular electrostatic potential	12
1.8.1.1 The natural atomic orbital/PC (NAO-PC) model	12
1.8.1.2 The multipole model	12
1.8.2 Local ionization energy, electron affinity, hardness and electronegativity	13
1.8.3 Local polarisability	14
1.8.4 Field normal to the surface	14
1.9 Descriptors	15
1.10 Surface-integral models (polynomial version)	20
1.11 Binned sufface-integral models 1.12 Spherical harmonic "hybrids"	20
1.12 Spherical harmonic Trybrids	21
1.14 Shannon entropy	21
1.15 Surface autocorrelations	21
1.16 Standard Rotationally Invariant Fingerprints (RIFs)	21
1.17 Maxima and Minima of the Local Properties	21
1.18 Atom-centred descriptors	21
1.19 Fragment analysis	21
	22
21 Command-line ontions	22
2.2 Options defined in the input SDF-file	24
2.2.1 Defining the centre for spherical-harmonic fits	24
2.2.2 Defining fragments	24
3 INPUT AND OUTPUT FILES	25
3.1 The VAMP .sdf file as input	25
3.1.1 Multi-structure SD-files	27

3.2 The Cepos MOPAC 6.sdf file as input

27

3.3 The Vhamil.par file	27
3.4 The ParaSuri Output life	20
3.4.1 For a spherical-harmonic surface	20
3.4.2 For a line with Shannon entrony	33
3.4.5 For a job with subcorrelation similarity $\frac{1}{2}$	37
2 E Deve Curef [™] CDE eutruit	57
3.5 ParaSuri SDF-output	38
3.5.1 Optional blocks in the SDF-output file	40
3.6 The surface (.psf) file	40
3.7 Anonymous SD (.asd) files	40
3.7.1 Optional blocks	40
3.8 Grid calculations with ParaSurf	41
3.8.1 User-specified Grid	41
3.8.2 Automatic grids	43
3.9 The SIM file format	43
3.10 Output tables	43
3.11 Binned SIM descriptor tables	43
3.12 Autocorrelation similarity tables	43
3.13 Shared files	43
TIPS FOR USING PARASURF′10 [™]	44
4.1 Choice of surface	44
4.2 ParaSurf [™] and ParaFit [™]	44
4.3 QSAR using grids	44
SUPPORT	45
5.1 Error reporting	45
5.2 CEPOS InSilico GmbH	45

6 LIST OF TABLES

4

5

7 LIST OF FIGURES	47
-------------------	----

8 REFERENCES

48

46

PROGRAM HISTORY

Release Date	Version	Platforms
1 st July 2005	ParaSurf ′05 [™] initial release (Revision A1)	32-bit Windows
1 st January 2006	ParaSurf´05 [™] Revision B1 (customer-feedback release)	32-dit Linux Irix
1 st July 2006	ParaSurf ´06 [™] Revision A1	32-bit Windows 32-bit Linux
1 st July 2007	ParaSurf ′07 [™] Revision A1	64-bit Linux Irix
1 st July 2008	ParaSurf ′08 [™] Revision A1	
22 nd August 2008	ParaSurf ´08 [™] Revision A2 (minor bug fix release)	
16 th December 2008	ParaSurf ´08 [™] Revision A3 (minor bug fix release)	
1 st July 2009	ParaSurf´09 [™] Revision A1	32-bit Windows
1 st September 2009	New Vhamil.par file including PM6 and first-row transition metals in AM1*	32-bit Linux 64-bit Linux
1 st February 2010	ParaSurf ´09 [™] Revision B1 (additional atom-centred descriptors)	
1 st July 2010	ParaSurf´10 [™] Revision A1	
1 st July 2011	ParaSurf´10 [™] Academic Version	

1 INTRODUCTION

ParaSurf[™] is a program to generate isodensity or solvent-excluded surfaces from the results of semiempirical molecular orbital calculations, either from VAMP [1] or a public-domain version of MOPAC modified and made available by Cepos InSilico. [2] The surface may be generated by shrink-wrap [3] or marching-cube [4] algorithms and the former may be fit to a spherical harmonic series. [5] The principles of these two techniques are explained below, but for comparison Figure 1 shows default isodensity surfaces calculated by ParaSurf[™] for a tetracycline derivative. The surfaces are color-coded according to the electrostatic potential at the surface.

Figure 1 Marching-cube (left) and shrink-wrap (right, fitted to a spherical-harmonic approximation) isodensity surfaces calculated with ParaSurf[™] using the default settings

Four local properties, the molecular electrostatic potential (MEP), [6] the local ionization energy (IE_L), [7] the local electron affinity (EA_L), [8] and the local polarisability (α_L) [8] are calculated at the points on the surface. Two further properties, the local hardness (η_L), [8] and the local electronegativity (χ_L) [8] can be derived from IE_L and EA_L.

The local properties can be used to generate a standard set of 81 descriptors [9] appropriate for quantitative structure-property relationships (QSPRs) for determining physical properties.

ParaSurf[™] can also generate local enthalpies and free energies of solvation [10] and integrate them over the entire molecular surface to give the enthalpy or free energy of solvation. ParaSurf[™] can read so-called *Surface-Integral Model* (SIM) files that allow it to calculate properties such as, for instance, the enthalpy and free energy of hydration and the free energies of solvation in *n*-octanol and chloroform. The surface-integral models are expressed as summations of local solvation energies over the molecular surface. These local solvation energies can be written to the ParaSurf[™] surface file.

ParaSurf[™] is the first program to emerge from the ParaShift collaboration between researchers at the Universities of Erlangen, Portsmouth, Southampton, Oxford and Aberdeen. It is intended to provide the molecular surfaces for small molecules (i.e. non-proteins) for subsequent quantitative structure-activity relationship (QSAR), QSPR, high-throughput virtual screening (HTVS), docking and scoring, pattern-recognition and simulation software that will be developed in the ParaShift project.

1.1 Changes relative to ParaSurf 09™

ParaSurf'10[™] has been enhanced relative to its predecessor in order to provide improved flexibility and a more comprehensive range of descriptors and features. The changes are outlined below:

1.1.1 Local electron affinity for AM1* and other Hamiltonians with d-orbitals as polarisation functions

Calculating the local electron affinity with AM1* led to spurious results with ParaSurf'09^T because the *d*-polarisation functions dominated the summation. A new technique [**11**] has been introduced to fix this problem in ParaSurf'10^T. A new command-line option requests that the local electron affinity be calculated exactly as in ParaSurf'09^T to ensure continuity.

1.1.2 The PM6 Hamiltonian

ParaSurf'10[™] can be used with PM6. [12] This was also the case with parSurf'09 if the post-release Vhamil.par file were used. PM6 is available for 70 elements.

- 1.1.3 Second generation surface-integral models; local hydrophobicity
- 1.1.4 Molecular fragments
- 1.1.5 Atom-centred descriptors^{*}

1.2 Isodensity surfaces

Isodensity surfaces [13] are defined as the surfaces around a molecule at which the electron density has a constant value. Usually this value is chosen to approximate the van der Waals' shape of the molecule. ParaSurf^M allows values of the isodensity level down to 0.00001 e⁻ Å⁻³. Lower values than this may result in failures of the surface algorithms for very diffuse surfaces.

1.3 Solvent-excluded surfaces

The solvent-excluded surface is obtained by rolling a spherical solvent molecule of radius r_{solv} over the surface of the molecule as shown in Figure 2. The surface of the solvent molecule defines the molecular surface, so that the yellow volume in Figure 2 becomes part of the molecule.

Only available in the full version.

Figure 2 2D-representation of a solvent-excluded surface

1.4 Solvent-accessible surfaces

Solvent-accessible surfaces are obtained in the same way as solvent-excluded surfaces but the <u>outer</u> surface of the solvent sphere is used to define the molecular surface, as shown in Figure 3.

1.5 Shrink-wrap surface algorithm

Shrink-wrap surface algorithms [3] are used to determine single-valued molecular surfaces. Single-valued in this case means that for any given radial vector from the centre of the molecule the surface is only crossed once (vectors **A** and **B** in Figure 4) and not multiply (vectors **C** and **D** in Figure 4):

Figure 4 2D-representation of a molecular surface with single-valued (A and B) and multiply valued (C and D) radial vectors from the centre

Single-valued surfaces are necessary for spherical-harmonic fitting (see 1.4). Thus, sphericalharmonic fitting is only available for shrink-wrap surfaces in ParaSurf[™]. The shrink-wrap algorithm works by starting outside the molecule (point **a** in Figure 5) and moving inwards along the radial vector until it finds the surface (in our case defined by the predefined level of the electron density, point **b** in Figure 5). Thus, the shrink-wrapped surface may contain areas (marked by dashed lines in Figure 5) for which the surface deviates from the true isodensity surface.

These areas of the surface, however, often have little consequence as they are situated above indentations in the molecule that are poorly accessible to solvents or other molecules. The shrink-wrapped surfaces generated by ParaSurf[™] should normally be fitted to a spherical-harmonic series for use in HTVS, similarity, pattern-recognition or high-throughput docking applications. The default molecular centre in ParaSurf[™] is the centre of gravity (CoG). In special cases in which the CoG lies outside the molecule, another centre may be chosen.

Figure 5 2D-representation of the shrink-wrap algorithm. The algorithms scans along the vector from point a towards the centre of the molecule until the electron density reaches the preset value (point b). The algorithm results in enclosures (marked yellow) for multi-valued radial vectors

Figure 6 shows a spherical-harmonically fitted shrink-wrap surface for a difficult molecule. The areas shown schematically in Figure 5 are clearly visible.

Figure 6 Spherical-harmonic approximation of a shrink-wrap isodensity surface. Note the areas where the surface does not follow the indentations of the molecule

1.6 Marching-cube algorithm

The marching-cube algorithm [4] implemented in ParaSurf[™] does not have the disadvantage of being single-valued like the shrink-wrap surface. It cannot, therefore, be fitted to a spherical harmonic series and is used as a purely numerical surface primarily for QSPR applications or surface-integral models. [10] The algorithm works by testing the electron density at the corners of cubes on a cubic lattice laid out through the molecular volume. The corners are divided into those "inside" the molecule (i.e. with a higher electron density than the preset value) and those "outside". The surface triangulation is then generated for each surface cube and the positions of the surface points corrected to the preset electron density.

1.7 Spherical-harmonic fitting

Complex surfaces can be fitted to spherical harmonic series to give analytical approximations of the surface. [5] The surfaces are fit to a series of distances $r_{\alpha,\beta}$ from the centre along the radial vector defined by the angles α and β as:

$$r_{\alpha,\beta} = \sum_{l=0}^{N} \sum_{m=-l}^{l} c_l^m Y_l^m \tag{1}$$

Where the distances $r_{\alpha,\beta}$ are linear combinations of spherical harmonics Y_l^m defined as:

$$Y_{l}^{m}(\alpha,\beta) = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_{l}^{m}(\cos\alpha)e^{im\beta}$$
(2)

where P_l^m (cos α) are associated Legendre functions and l and m are integers such that -l <= m <= l. In the above form, spherical harmonics are complex functions. Duncan and Olson [14] have used the real functions

$$Y_l^m(\alpha,\beta) = N_{lm} P_l^m(\cos\alpha) \cos|m|\beta$$
(3)

where N_{lm} are normalization factors, to describe molecular surfaces using spherical harmonics.

ParaSurf[™] not only fits the surface itself (i.e. the radial distances) to spherical harmonic expansions, but also the four local properties (see 1.8). In this way, a completely analytical description of the shape of the molecule and its intermolecular binding properties is obtained. [15] This description can be truncated at different orders *l* depending on the application and the precision needed. Thus, a simple description of the molecular properties (shape, MEP, IE_L, EA_L and α_L) to order 2 consists of only five sets of nine coefficients each, or 45 coefficients. These coefficients can be rotated, overlaps calculated etc. [5] to give fast scanning of large numbers of compounds.

Note that, because of the approximate nature of the spherical-harmonic fits, the default isodensity level for the shrink-wrapped surface $(0.00002 \text{ e}^{-}\text{Å}^{-3})$ is lower than that $(0.0003 \text{ e}^{-}\text{Å}^{-3})$ appropriate for an approximately van der Waals' surface using the marching-cube algorithm. The lower value avoids the surface coming too close to atoms. Note also that the fits are incremental, which means that the order chosen for a given application can be obtained by ignoring coefficients of higher order in the spherical-harmonic series.

In some cases, the default resolution of the molecular surface does not allow fitting the sphericalharmonic expansion to very high orders without introducing noise ("ripples") on the fitted surface. In this case, the calculated RMSD becomes larger at higher orders of the spherical-harmonic expansion. ParaSurf'10[™] recognizes this condition and truncates the fitting procedure at the optimum value. This can be recognized in the output because the RMSD for later cycles remains constant and the coefficients of the higher order spherical harmonics are all zero. This guarantees the optimum fit in each case and is important for applications that use either the spherical-harmonic coefficients themselves or the hybridization coefficients.

The choice of centre for fitting to a spherical-harmonic expansion is critical. ParaSurf' 10^{T} therefore goes through a multi-step procedure in order to find a suitable centre. This procedure is retained for all molecules for which the ParaSurf' 08^{T} found a suitable centre. However, if the algorithms implemented in ParaSurf' 08^{T} fail to find a suitable centre, the additional technique implemented in ParaSurf' 10^{T} will probably work.

The problem with many molecules is that, for instance, the centre of mass does not lie within the molecular volume. This can easily be the case for, for instance, U- or L-shaped molecules. The procedure implemented in ParaSurf'10^m works as follows:

- 1. The program first calculates the centre of mass and tests whether it lies within the volume of the molecule. If it does, it is used as the molecular centre. If not, the program moves on to the next step.
- 2. ParaSurt[™] calculates the principal moments of inertia of the molecule and derives a centre from them by assuming that the molecule is U- or V-shaped. The procedure tries to place the centre at the base centre of the molecule. This procedure was implemented in ParaSurf'08[™] as a fallback if the centre of mass proved unsuitable. If it also fails to find a suitable centre, ParaSurf'10[™] moves on to a third option, which finds a centre for all but the most difficult molecules.
- 3. The new procedure first searches for the largest plane in the molecule (i.e. the one that contains the most atoms). This search has some leeway, so that the atoms must not all lie exactly in the plane. As a second step, the second largest plane is sought. The molecular centre is then placed in the hinge area between the two planes, as illustrated in Figure 7:

Figure 7 Schematic representation of the planes and hinge area used to determine the centre for spherical-harmonic expansions

1.8 Local properties

The local properties calculated by ParaSurf[™] are those related to intermolecular interactions. Local properties, sometimes inaccurately called fields in QSAR work, are properties that vary in space around the molecule and therefore have a distribution of values at the molecular surface. The best known and most important local property in this context is the molecular electrostatic potential, which governs Coulomb interactions, but the MEP only describes a part of the intermolecular interaction energy, so that further local properties are needed.

1.8.1 Molecular electrostatic potential

The MEP is defined in ParaSurf^{$^{\text{M}}$} as the energy of interaction of a single positive electronic charge at the position *r* with the molecule. Within quantum mechanical (semiempirical or *ab initio* molecular orbital (MO) theory, density functional theory (DFT)) the MEP (V(*r*)) is described [6] as:

$$MEP(\mathbf{r}) = \sum_{i=1}^{n} \frac{Z_i}{|\mathbf{R}_i - \mathbf{r}|} - \int \frac{\rho(\mathbf{r}')d\mathbf{r}'}{|\mathbf{r}' - \mathbf{r}|}$$
(4)

where *n* is the number of atoms in the molecule, Z_i is the nuclear charge of atom i located at \mathbf{R}_i and $\rho(\mathbf{r})$ is the electron-density function of the molecule. This expression, however, involves integrating the electron density, a time-consuming calculation. ParaSurf[™] therefore uses two different approximate models for calculating the MEP.

1.8.1.1 The natural atomic orbital/PC (NAO-PC) model

The NAO-PC model [16, 17] uses a total of nine point charges, one positive charge at the nucleus and eight negative ones distributed around it, to describe the electrostatics of a nonhydrogen atom with a valence-only *s*- and *p*-basis set for the semiempirical Hamiltonians MNDO, [18] AM1 [19] and PM3. [20] The negative charges are located at the charge centres of each lobe of the natural atomic orbitals, which are obtained by diagonalising the one-atom blocks of the density matrix. [16] The NAO-PC charges are calculated by VAMP and output in the .sdf file for use in ParaSurf[™]. The NAO-PC model is therefore only available when using ParaSurf[™] with VAMP .sdf input. NAO-PC charges are also not available for semiempirical Hamiltonians such as MNDO/d [21] or AM1* [22] that use *d*-orbitals in the basis set.

1.8.1.2 The multipole model

The integrals needed to evaluate **Eq. 4** in MNDO-type methods use a multipole approximation [**18**, **21**] that extends to quadrupoles. We can therefore also use this approximation to calculate atom-centred monopoles, dipoles and quadrupoles for each atom in the molecule. [**23**] This multipole model is applicable to all methods, including those with *d*-orbitals, and can be used with MOPAC output files as input to ParaSurf^M.

1.8.2 Local ionization energy, electron affinity, hardness and electronegativity

The local ionization energy $IE_L(\mathbf{r})$ is defined [7] as a density-weighted Koopmans' ionization potential at a point \mathbf{r} near the molecule:

$$IE_{L}(\mathbf{r}) = \frac{-\sum_{i=1}^{HOMO} \rho_{i}(\mathbf{r})\varepsilon_{i}}{\sum_{i=1}^{HOMO} \rho_{i}(\mathbf{r})}$$
(5)

where *HOMO* is the number of the highest occupied MO, $\rho_i(\mathbf{r})$ is the electron density at point \mathbf{r} due to MO i and ε_i is its Eigenvalue. The local ionization energy describes the tendency of the molecule to interact with electron acceptors (Lewis acids) in a given region in space. [7, 8]

The definition of the local electron affinity is a simple extension of Eq. 5 to the virtual MOs: [8]

$$EA_{L}(\mathbf{r}) = \frac{-\sum_{i=LUMO}^{norbs} \rho_{i}(\mathbf{r})\varepsilon_{i}}{\sum_{i=LUMO}^{norbs} \rho_{i}(\mathbf{r})}$$
(6)

The local electron affinity is the equivalent of the local ionization energy for interactions with electron donors (Lewis bases). [8]

Eq. 6 requires that the occupied and virtual orbitals be approximately equivalent to each other. This is not the case for semiempirical Hamiltonians (such as AM1*) that include *d*-orbitals as polarisation functions or for extensive basis sets in Hartree-Fock *ab initio* or in Density-Functional theory (DFT) calculations. A new technique has therefore been defined [11] to exclude pure polarisation functions from the summation in **Eq. 6**. This technique is now default in ParaSurf'10TM and gives reliable results. For continuity, a new command-line option (EAL09) has been introduced to request that the calculation of the local electron affinity be performed exactly as in ParaSurf'09TM and earlier versions.

Two further, less fundamental local properties have been defined. [8] These are the local hardness, η_L :

$$\eta_L = \frac{\left(IE_L - EA_L\right)}{2} \tag{7}$$

and the local electronegativity, χ_L :

$$\chi_L = \frac{\left(IE_L + EA_L\right)}{2} \tag{8}$$

1.8.3 Local polarisability

Within the NDDO, the molecular electronic polarisability is easily accessible using the parameterized version [24] of the variational technique introduced by Rivail, [25] which can also be partitioned into an additive polarisability scheme. [26] This allows us to define the local polarisability, α_L , at a point near the molecule as

$$\alpha_{L}(\mathbf{r}) = \frac{\sum_{j=1}^{norbs} \rho_{j}^{1}(\mathbf{r})q_{j}\overline{\alpha}_{j}}{\sum_{j=1}^{norbs} \rho_{j}^{1}(\mathbf{r})q_{j}}$$
(9)

where q_j is the Coulson occupation and $\overline{\alpha}_j$ the isotropic polarisability attributed to atomic orbital *j*. The density ρ_j^1 is defined as the electron density at the point in question due to an exactly singly occupied atomic orbital *j*. The sum is now over atomic orbitals, rather than MOs as for the other local properties. Thus, the local polarisability is a simple occupation-weighted sum of the orbital polarisabilities in which the contribution of each AO is determined by the density of the individual AO at the point being considered.

1.8.4 Field normal to the surface

The electrostatic field (the first derivative of the potential) normal to the molecular surface is closely related to the electrostatic solvation energy in implicit solvation models. [27, 28] This field also has the advantage that it is largely independent of the total molecular charge, so that charged molecules can be compared with neutral ones. If the molecular electrostatic potential is used for this purpose, the charge of ions leads a shift in the potential descriptors, so that molecules and ions with different charges cannot be compared directly. The direction of the normal field (inwards or outwards) also defines, for instance hydrogen-bond donors and acceptors specifically.

1.9 Descriptors

A set of 81 molecular descriptors derived from the MEP, local ionization energy, IE_L, electron affinity, EA_L, electronegativity, χ_L , hardness, η_L , and polarisability, α_L has been defined for QSPR-studies. [9] These and several related descriptors calculated and output by ParaSurf[™] are defined in the following table.

Descriptor	Description	Formula/ Reference	Symbol in CSV file	
μ	Dipole moment		dipole	
μ _D	Dipolar density	[21]	dipden	
α	Molecular electronic polarisabilty	[29]	polarizability	
MW	Molecular weight		MWt	
G	Globularity	[30]	globularity	
А	Molecular surface area		totalarea	
VOL	Molecular volume		volume	
V _{max}	Maximum (most positive) MEP	[31]	MEPmax	
V _{min}	Minimum (most negative) MEP	[31]	MEPmin	
$\overline{V_{_+}}$	Mean of the positive MEP values	[31]	meanMEP+	
\overline{V}_{-}	Mean of the negative MEP values	[31]	meanMEP-	
\overline{V}	Mean of all MEP values	[31]	meanMEP	
ΔV	MEP-range	[<mark>31</mark>]	MEP-range	
$\sigma_{\scriptscriptstyle +}^2$	Total variance in the positive MEP values	[31]	MEPvar+	
$\sigma_{\scriptscriptstyle -}^2$	Total variance in the negative MEP values	[31]	MEPvar-	
$\sigma_{\scriptscriptstyle tot}^2$	Total variance in the MEP	[31]	MEPvartot	
ν	MEP balance parameter	[<mark>31</mark>]	MEPbalance	
$\sigma_{tot}^2 v$	Product of the total variance in the MEP and the balance parameter	[31]	var*balance	
γ_1^V	Skewness of the MEP- distribution	$\gamma_1^{\alpha_L} = \frac{\sum_{i=1}^{N} \left(\alpha_L^i - \overline{\alpha}_L\right)^3}{(N-1)\sigma^3}$	MEPskew	

Table 1: The descriptors calculated by ParaSurf™

Descriptor	Description	Formula/ Reference	Symbol in CSV file
γ_2^{V}	Kurtosis of the MEP- distribution	$\gamma_{2}^{V} = \frac{\sum_{i=1}^{N} (V_{i} - \overline{V})^{4}}{(N-1)\sigma^{4}} - 3$	MEPkurt
\int_{V}	Integrated MEP over the surface	$\int_V = \sum_{i=1}^N V_i a_i$	MEPint
IE_L^{\max}	Maximum value of the local ionization energy		IELmax
IE_L^{\min}	Minimum value of the local ionization energy		IELmin
$\overline{IE_L}$	Mean value of the local ionization energy	$\overline{IE_L} = \frac{1}{N} \sum_{i=1}^{N} IE_L^i$	IELbar
ΔIE_L	Range of the local ionization energy	$\Delta IE_L = IE_L^{\rm max} - IE_L^{\rm min}$	IELrange
$\sigma^2_{\scriptscriptstyle I\!E}$	Variance in the local ionization energy	$\sigma_{\rm \tiny IE}^2 = \frac{1}{N} \sum_{i=1}^{N} \left[IE_L^i - \overline{IE_L} \right]^2$	IELvar
${\cal Y}_1^{I\!E_L}$	Skewness of the local ionization energy distribution	$\gamma_1^{IE_L} = \frac{\sum_{i=1}^{N} \left(IE_L^i - \overline{IE}_L \right)^3}{(N-1)\sigma^3}$	IELskew
$\gamma_2^{{}^{I\!E_L}}$	Kurtosis of the local ionization energy distribution	$\gamma_{2}^{IE_{L}} = \frac{\sum_{i=1}^{N} \left(IE_{L}^{i} - \overline{IE}_{L} \right)^{4}}{(N-1)\sigma^{4}} - 3$	IELkurt
\int_{IE_L}	Integrated local ionization energy over the surface	$\int_{IE_L} = \sum_{i=1}^N IE_L^i a_i$	IELint
EA_L^{\max}	Maximum of the local electron		EALmax
EA_L^{\min}	Minimum of the local electron affinity		EALmin
$\overline{EA_{L+}}$	Mean of the positive values of the local electron affinity	$\overline{EA_{L+}} = \frac{1}{N^{+}} \sum_{i=1}^{N^{+}} EA_{L+}^{i}$	EALbar+
$\overline{EA_{L-}}$	Mean of the negative values of the local electron affinity	$\overline{EA_{L-}} = \frac{1}{N^{-}} \sum_{i=1}^{N^{-}} EA_{L-}^{i}$	EALbar-
$\overline{EA_L}$	Mean value of the local electron affinity	$\overline{EA_L} = \frac{1}{N} \sum_{i=1}^{N} EA_L^i$	EALbar
ΔEA_L	Range of the local electron	$\Delta EA_L = EA_L^{\max} - EA_L^{\min}$	EALrange

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\sigma^2_{\scriptscriptstyle E\!A+}$	Variance in the local electron affinity for all positive values	$\sigma_{EA+}^{2} = \frac{1}{m} \sum_{i=1}^{m} \left[EA_{i}^{+} - \overline{EA^{+}} \right]^{2}$	EALvar+
$\sigma^2_{\scriptscriptstyle E\!A-}$	Variance in the local electron affinity for all negative values	$\sigma_{EA-}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[EA_{i}^{-} - \overline{EA^{-}} \right]^{2}$	EALvar-
$\sigma^2_{\scriptscriptstyle EAtot}$	Sum of the positive and negative variances in the local electron affinity	$\sigma_{EAtot}^2 = \sigma_{EA+}^2 + \sigma_{EA-}^2$	EALvartot
V _{EA}	Local electron affinity balance parameter	$v_{EA} = \frac{\sigma_{EA+}^2 \cdot \sigma_{EA-}^2}{\left[\sigma_{EA}^2\right]^2}$	EALbalance
$\delta\!\mathrm{A}_{\scriptscriptstyle E\!A}^{\scriptscriptstyle +}$	Fraction of the surface area with positive local electron affinity	$\delta A_{EA}^{+} = rac{A_{EA}^{+}}{A}$, A = total surface area	EALfraction+
$\mathbf{A}_{E\!A}^+$	Surface area with positive local electron affinity		EALarea+
$\gamma_1^{\textit{EA}_L}$	Skewness of the local electron affinity distribution	$\gamma_1^{EA_L} = \frac{\sum_{i=1}^{N} \left(EA_L^i - \overline{E}\overline{A}_L \right)^3}{(N-1)\sigma^3}$	EALskew
$\gamma_2^{EA_L}$	Kurtosis of the local electron affinity distribution	$\gamma_2^{EA_L} = \frac{\sum_{i=1}^{N} \left(EA_L^i - \overline{E}\overline{A}_L \right)^4}{(N-1)\sigma^4} - 3$	EALkurt
\int_{EA_L}	Integrated local electron affinity over the surface	$\int_{IE_L} = \sum_{i=1}^N E A_L^i a_i$	EALint
α_L^{\max}	Maximum value of the local polarisability		POLmax
$lpha_{\scriptscriptstyle L}^{\scriptscriptstyle { m min}}$	Minimum value of the local polarisability		POLmin
$\overline{\alpha_{\scriptscriptstyle L}}$	Mean value of the local polarisability	$\overline{\alpha_L} = \frac{1}{N} \sum_{i=1}^N \alpha_L^i$	POLbar
$\Delta \alpha_{L}$	Range of the local polarisability	$\Delta \alpha_L = \alpha_L^{\rm max} - \alpha_L^{\rm min}$	POLrange
σ_{lpha}^2	Variance in the local polarisability $\sigma_{\alpha}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\alpha_{L}^{i} - \overline{\alpha_{L}} \right]^{2}$		POLvar
$\gamma_1^{lpha_L}$	Skewness of the local polarisability distribution	$\gamma_1^{\alpha_L} = \frac{\sum_{i=1}^N \left(\alpha_L^i - \overline{\alpha}_L\right)^3}{(N-1)\sigma^3}$	POLskew

Descriptor	Description	Formula/ Reference	Symbol in CSV file	
$\gamma_2^{\alpha_L}$	Kurtosis of the local polarisability distribution	$\gamma_2^{\alpha_L} = \frac{\sum_{i=1}^{N} \left(\alpha_L^i - \overline{\alpha}_L\right)^4}{(N-1)\sigma^4} - 3$	POLkurt	
\int_{α_L}	Integrated local polarisability over the surface	$\int_{\alpha_L} = \sum_{i=1}^N \alpha_L^i a_i$	POLint	
$\chi_L^{ m max}$	Maximum value of the local electronegativity		ENEGmax	
${\mathcal X}_L^{\min}$	Minimum value of the local electronegativity		ENEGmin	
$\overline{\chi_{\scriptscriptstyle L}}$	Mean value of the local electronegativity	$\overline{\chi_L} = \frac{1}{N} \sum_{i=1}^N \chi_L^i$	ENEGbar	
$\Delta \chi_L$	Range of the local electron electronegativity	$\Delta \chi_L = \chi_L^{\max} - \chi_L^{\min}$	ENEGrange	
σ_{χ}^{2}	Variance in the local electronegativity	$\sigma_{\chi}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\chi_{L}^{i} - \overline{\chi_{L}} \right]^{2}$	ENEGvar	
$\gamma_1^{\chi_L}$	Skewness of the local electronegativity distribution	$\gamma_1^{\chi_L} = \frac{\sum_{i=1}^N \left(\chi_L^i - \overline{\chi}_L\right)^3}{(N-1)\sigma^3}$	ENEGskew	
$\gamma_2^{\chi_L}$	Kurtosis of the local electronegativity distribution	$\gamma_{2}^{\chi_{L}} = \frac{\sum_{i=1}^{N} (\chi_{L}^{i} - \overline{\chi}_{L})^{4}}{(N-1)\sigma^{4}} - 3$	ENEGkurt	
\int_{χ_L}	Integrated local electronegativity over the surface	$\int_{\chi_L} = \sum_{i=1}^N \chi_L^i a_i$	ENEGint	
$\eta_{\scriptscriptstyle L}^{\scriptscriptstyle m max}$	Maximum value of the local hardness		HARDmax	
$\eta_{\scriptscriptstyle L}^{\scriptscriptstyle { m min}}$	Minimum value of the local hardness		HARDmin	
$\overline{\eta_{\scriptscriptstyle L}}$	Mean value of the local hardness	$\overline{\eta_L} = \frac{1}{N} \sum_{i=1}^N \eta_L^i$	HARDbar	
$\Delta \eta_{\scriptscriptstyle L}$	Range of the local electron hardness	$\Delta\eta_L = \eta_L^{\max} - \eta_L^{\min}$	HARDrange	
σ_η^2	Variance in the local hardness	$\sigma_{\eta}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\eta_{L}^{i} - \overline{\eta_{L}} \right]^{2}$	HARDvar	
$\gamma_1^{\eta_L}$	Skewness of the local hardness distribution	$\gamma_1^{\eta_L} = \frac{\sum_{i=1}^N \left(\eta_L^i - \overline{\eta}_L\right)^3}{(N-1)\sigma^3}$	HARDskew	

Descriptor	Description	ion Formula/ Reference Symbol in CSV file	
$\gamma_2^{\eta_L}$	Kurtosis of the local hardness distribution	$\gamma_{2}^{\eta_{L}} = \frac{\sum_{i=1}^{N} (\eta_{L}^{i} - \overline{\eta}_{L})^{4}}{(N-1)\sigma^{4}} - 3$	HARDkurt
\int_{η_L}	Integrated local hardness over the surface	$\int_{\eta_L} = \sum_{i=1}^N \eta_L^i a_i$	HARDint
F_N^{\max}	Maximum value of the electrostatic field normal to the surface		FNmax
F_N^{\min}	Minimum value of the field normal to the surface		FNmin
$\overline{F_{_N}}$	Mean value of the field normal to the surface	$\overline{F_{_N}} = rac{1}{N}\sum_{i=1}^N \chi_L^i$	FNmean
$\sigma_{\scriptscriptstyle F}^2$	Variance in field normal to the surface	$\sigma_F^2 = \frac{1}{N} \sum_{i=1}^{N} \left[F_N^i - \overline{F_N} \right]^2$	FNvartot
$\sigma_{\scriptscriptstyle F^+}^2$	Variance in the field normal to the surface for all positive values	$\sigma_{F+}^{2} = \frac{1}{m} \sum_{i=1}^{m} \left[F_{N}^{i+} - \overline{F_{N}^{+}} \right]^{2}$	FNvar+
$\sigma_{\scriptscriptstyle F^-}^2$	Variance in the field normal to the surface for all negative values	$\sigma_{F-}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[F_{N}^{i-} - \overline{F_{N}^{-}} \right]^{2}$	FNvar-
V_F	Normal field balance parameter	$v_F = \frac{\sigma_F^2 + \sigma_F^2}{\left[\sigma_F^2\right]^2}$	FNbal
$\gamma_1^{F_N}$	Skewness of the field normal to the surface	$\gamma_{1}^{F_{N}} = \frac{\sum_{i=1}^{N} (F_{N}^{i} - \overline{F}_{N})^{3}}{(N-1)\sigma^{3}}$	FNskew
${\gamma}_2^{F_N}$	Kurtosis of the field normal to the surface	$\gamma_{2}^{F_{N}} = \frac{\sum_{i=1}^{N} \left(F_{N}^{i} - \overline{F}_{N}\right)^{4}}{(N-1)\sigma^{4}} - 3$	FNkurt
\int_{F_N}	Integrated field normal to the surface over the surface	$\int_{F_N} = \sum_{i=1}^N F_N^i a_i$	FNint
$\int_{F_N}^+$	Integrated field normal to the surface over the surface for all positive values	$\int_{F_N}^+ = \sum_{i=1}^N F_N^i a_i \text{ if } F_N^i \ge 0$	FN+
$\int_{F_N}^-$	Integrated field normal to the surface over the surface for all negative values	$\int_{F_{N}}^{-} = \sum_{i=1}^{N} F_{N}^{i} a_{i} \text{ if } F_{N}^{i} < 0$	FN-

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\int_{ F_N }$	Integrated absolute field normal to the surface over the surface	$\int_{F_N} = \sum_{i=1}^N \left F_N^i \right a_i$	FNabs
	Additionally if the Sh	nannon Entropy is calculated	
H_{in}^{\max}	Maximum value of the internal Shannon Entropy		SHANImax
H_{in}^{\min}	Minimum value of the internal Shannon Entropy		SHANImin
$\overline{H_{_{in}}}$	Mean value of the internal Shannon Entropy	$\overline{H_{in}} = \frac{1}{N} \sum_{i=1}^{N} H_{in}^{i}$	SHANIbar
$\sigma^2_{H_{in}}$	Variance in the internal Shannon Entropy	$\sigma_{H_{in}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[H_{in}^{i} - \overline{H_{in}} \right]$	SHANIvar
$\int_{H_{in}}$	Integrated internal Shannon Entropy over the surface $\int_{H_{in}} = \sum_{i=1}^{N} H_{in}^{i} a_{i}$		SHANItot
And if the external Shannon Entropy is available			
H_{ex}^{\max}	Maximum value of the external Shannon Entropy		SHANEmax
H_{ex}^{\min}	Minimum value of the external Shannon Entropy		SHANEmin
$\overline{H_{ex}}$	Mean value of the external Shannon Entropy	$\overline{H_{ex}} = \frac{1}{N} \sum_{i=1}^{N} H_{ex}^{i}$	SHANEbar
$\sigma^2_{_{H_{ex}}}$	Variance in the external Shannon Entropy	$\sigma_{H_{ex}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[H_{ex}^{i} - \overline{H_{ex}} \right]$	SHANEvar
$\int_{H_{ex}}$	Integrated internal Shannon Entropy over the surface	$\int_{H_{ex}} = \sum_{i=1}^{N} H_{ex}^{i} a_{i}$	SHANEtot

1.10 Surface-integral models (polynomial version)^{*} 1.11 Binned surface-integral models^{*}

Only available in the full version.

1.12 Spherical harmonic "hybrids"

Once the molecular shape or a local property have been fitted to a spherical-harmonic expansion, [13] the shape or property can be described succinctly as a series of spherical-harmonic "hybridization" coefficients analogous to the concept of hybrid atomic orbitals. Thus, for each value of l in Eq. 1 the "hybridization" coefficient H_l is given by:

$$H_l = \sum_{i=-m}^{m} \left(c_l^m\right)^2 \tag{11}$$

The hybridization coefficients H_l can be used as additional descriptors for fast QSPR screening.

1.13 Descriptors and moments based on polynomial surface-integral models^{*}

1.14 Shannon entropy^{*}

1.15 Surface autocorrelations^{*}

1.16 Standard Rotationally Invariant Fingerprints (RIFs)

Mavridis et al. [32] introduced standard rotationally invariant fingerprints (RIFs) based on the spherical-harmonic hybridization coefficients defined above. These fingerprints provide a detailed description of the molecular shape, electrostatics, donor/acceptor properties and polarisability as a standard series of 54 floating point numbers.

1.17 Maxima and Minima of the Local Properties^{*}
1.18 Atom-centred descriptors^{*}
1.19 Fragment analysis^{*}

Only available in the full version.

2 PROGRAM OPTIONS

2.1 Command-line options

ParaSurf[™] program options are given as command-line arguments. Arguments are separated by blanks, so that no single argument may contain a blank character. Arguments may be written in any combination of upper and lower case. The options are:

 Table 2:
 ParaSurf[™] command-line options

	certification into optionio			
<name></name>		Base name for the input file (must be	the first argument). <name></name>	
		is not required if the first argument is -version (see below)		
		Using this option, the input file is		
		assumed to be	<name>_v.sdf</name>	
		if a file with this name exists.		
		Otherwise the file	<name>.sdf</name>	
		will be used as input.		
		If neither of these files are found, the		
		program will use an .sdf file written		
		by the Cepos version of Mopac 6.		
		I hese files are called	<name>_m.sdf</name>	
		The output files are		
		The output mes are	<name>_p.out</name>	
			<name>_p.sdr</name>	
			<name>.psr (optional)</name>	
			<name>.asd (optional)</name>	
			<name>_p.vmp (optional)*</name>	
suri=	wrap	Shrink-wrap surface (default)		
	cube	Marching-cube surface		
contour=	isoden	I he surface is defined by the electron	density	
	solvex	A solvent-excluded surface is used.		
fit=	sphh	Spherical-harmonic fitting (default for	surf=wrap)	
	isod	Smooth to preset isodensity value (default for surf=cube)		
	none	No fitting		
iso=	n.nn	Isodensity value set to n . nn e ⁻ Å ⁻³		
		(default for shrink-wrap surface = 0.00002;		
		default for marching-cube surface = 0.0003;		
		minimum possible value = 0.00001)		

Only available in the full version.

rsol=	n.nn	A solvent-probe radius of n . nn Å is used for calculating the
		solvent-excluded or solvent-accessible surface (default=1.0,
		allowed range is from 0.0 to 2.0 Å)
mesh=	n.nn	The mesh size used to triangulate the surface is set to ${\tt n.nn}~{\rm \AA}$
		(default value = 0.2 Å, allowed range is from 0.1 to 1.0 Å)
grid=	<filename></filename>	Read the Cartesian coordinates at which to calculate a grid of the
		four properties (MEP, IE _L , EA _L , α_L). See 3.8.1
	auto	ParaSurf [™] calculates an automatic grid (see 3.8.2)
lattice=	n.nn	Sets the lattice spacing for the grid=auto option (see 3.8.2)
-version		Must be the first argument. Requests that ParaSurf [™] prints the
		version number to the standard output channel and then stops
		without performing a calculation.
eal09		Do not use the selection procedure for virtual orbitals [11] when
		calculating the local electron affinity. This option provides
		continuity with earlier versions of ParaSurf [™]

Examples:

parasurf test surf=wrap fit=sphh iso=0.03 estat=naopc

Use the input file $test_v.sdf$, test.sdf or $test_m.sdf$ to calculate a shrink-wrap surface with an isodensity value of $0.03 e^{-A^{-3}}$, perform a spherical-harmonic fit, use NAO-PC electrostatics and write the spherical-harmonic coefficients to $test_P.sdf$.

parasurf test surf=cube fit=none

Use the file **test_v.sdf**, **test.sdf** or **test_m.sdf** as input to perform a marching-cube surface determination without fitting and to calculate the descriptor set.

2.2 Options defined in the input SDF-file

2.2.1 Defining the centre for spherical-harmonic fits

The automatic determination of the molecular centre for spherical-harmonic fitting can be overridden by adding a field to the Input (usually VAMP) SDF-file with the tag:

<SPHH CENTER>

The centre can be defined using Cartesian coordinates using an input line (immediately after the **SPHH CENTER** tag) of the format:

Cartesian x.xx y.yy z.zz

where **x**. **xx**, **y**. **yy** and **z**. **zz** are the x, y, and z-coordinates, respectively. The capitalization of "Cartesian" is required.

Alternatively, a list of atoms can be given using the format

Atoms n1 n2 n3 n4 n5 n6

where *n1* etc. are the numbers of the atoms to be used to calculate the centre of gravity. The capitalization of "Atoms" is required and the list of atoms is limited to one line.

2.2.2 Defining fragments^{*}

Only available in the full version.

ParaSurf[™] uses the following files for input and output:

Table 3: ParaSurf [™] in	put and output files	
File	Name	Description
Input	<filename>_v.sdf or <filename>.sdf</filename></filename>	VAMP .sdf file output. VAMP must be run with the ALLVECT option to be able to calculate all the properties. The VAMP version used must be able to calculate AO-polarisabilities.
	(if available) or <filename>_m.sdf</filename>	If no VAMP .sdf file is found, ParaSurf [™] defaults to a Cepos Mopac 6 .sdf file. It is strongly recommended to use the EF option for geometry optimizations in Mopac.
Hamiltonian	Vhamil.par	The VAMP parameters file (also found in the VAMP executable directory). This file must be copied to the ParaSurf [™] executable directory.
Output	<filename>_p.out</filename>	Always written.
SD-file	<filename>_p.sdf</filename>	Always written.

3.1 The VAMP .sdf file as input

VAMP .sdf files, an extension of the MDL .sdf file format, [**33**] are the primary communication channel between VAMP and ParaSurf[™]. The atomic coordinates and bond definitions are given in the MDL format as shown in **Figure 8**.The remaining fields are indicated by tags with the form:

<FIELD NAME>

FIELD_NAME is a predefined text tag used to locate the relevant data within the .sdf file.

Only the important fields for a ParaSurf[™] calculation will be described here:

<HAMILTONIAN>

The Hamiltonian field defines the semiempirical Hamiltonian (model and parameters) used for the calculation. The Hamiltonian must be defined for ParaSurf[™] to be able to calculate the electrostatics and the local polarisabilities. NAO-PC electrostatics and the local polarisability are not available for all methods. Quite generally, the multipole electrostatics model is to be preferred over the NAO-PC model, which can only be used if the VAMP .sdf file contains a block with the tag:

<NAO-PC>

NAO-PCs cannot be calculated for methods with *d*-orbitals. The local polarisability calculation has not yet been extended to these methods, but will be in a future release.

1-Bromo-3, OMVAMP81A0	5-difluorob 4250313563D	enzene 1 0.000	0.00000	0
12 12 0 -2.6274 -1.2738 -0.5810 0.8231 1.5096 1.5266 0.8142 1.7431 -0.5805 -1.1264 2.6274 -1.1515 1 2 1 2 3 4 3 4 4 4 5 1 4 6 4 6 7 4 7 8 1 2 9 4 7 9 4 3 10 1 6 11 1 9 12 1 M END	0 0 0 0.2410 1.4623 1.4389 2.6055 0.2198 -0.9793 -2.6055 -0.9840 2.4167 0.2339 -1.9253	0.0003 0.0003 0.0003 0.0004 0.0001 -0.0004 0.0002 -0.0003 0.0003 0.0001	1 V2000 F C C F C C Br C H H H	

Figure 8 The headers and titles, atomic coordinates and bond definitions from a VAMP .sdf file. The format follows the MDL definition [25]

The following table gives an overview of the methods and their limitations:

Hamiltonian	Reference	Electrostat	lics	Local
		NAO-PC	Multipole	Polarisability
MNDO	[18]	YES	YES	YES
AM1	[19]	YES	YES	YES
PM3	[20]	YES	YES	YES
MNDO/c	[34]	YES	YES	NO
MNDO/d	[21]	NO	YES	NO
AM1*	[22]	NO	YES	NO

<VAMPBASICS>

The VAMPBASICS block contains the following quantities (FORTRAN format 6f13.6):

Heat of Formation	kcal mol ⁻¹
HOMO energy	eV
LUMO energy	eV
Dipole moment	

27

<i>x</i> -component	Debye
y-component	Debye
z-component	Debye

<TOTAL COULSON CHARGE>

The total charge of the molecule.

<DENSITY MATRIX ELEMENTS>

The DENSITY MATRIX ELEMENTS block contains the one-atom blocks of the density matrix for the non-hydrogen atoms. For an *sp*-atom, there are ten elements, for an *spd*-atom 45. The squares of the diagonal elements for hydrogen atoms are included in the **<CHARGE ON HYDROGENS>** block that follows the density matrix. The density-matrix elements are used in ParaSurf[™] to calculate the local properties and are essential.

<ORBITAL VECTORS>

The ORBITAL VECTORS block contains the MO-eigenvectors and related information and is essential for calculating the local properties. VAMP must be run with the keyword **ALLVECT** in order to write all the MO vectors to the SDF file.

The entire SDF input file is echoed to the **<filename>_p.sdf** output file and the properties calculated by ParaSurf[™] are added in additional blocks at the end.

3.1.1 Multi-structure SD-files^{*}

3.2 The Cepos MOPAC 6.sdf file as input

Cepos Mopac 6 writes an .sdf file containing the above blocks with the exception that the MOPACBASICS block replaces VAMPBASICS. No additional keywords are required to request the correct .sdf output for ParaSurf^M.

3.3 The Vhamil.par file

The file Vhamil.par is used by VAMP to define the available Hamiltonians and elements and supply the parameters. This file is also used by ParaSurf[™] for the same purpose. A Vhamil.par file for standard Hamiltonians and elements is supplied with the ParaSurf[™] program. In order to be sure that all Hamiltonians and elements available to VAMP can also be handled by ParaSurf[™], however, the

Only available in the full version.

Vhamil.par file from the VAMP executable directory should be copied into the ParaSurf[™] executable directory.

3.4 The ParaSurf[™] output file

The ParaSurf^{$^{\text{M}}$} output file provides the user with information about the calculation and the results. It is, however, not intended as the primary means of communication between ParaSurf^{$^{\text{M}}$} and other programs. Thus, the essential information contained in the output file is also available from the ParaSurf^{$^{\text{M}}$} output .sdf file.

3.4.1 For a spherical-harmonic surface

Figure 9 shows the output for a calculation using the options **surf=wrap fit=sphh translate** for trimethoprim, **1**.


```
<> ParaSurf'10 Academic Version

<> Copyright (c) 2006,2007,2008,2009,2010 Friedrich-Alexander-Universitaet

Erlangen-Nuernberg and Cepos InSilico Ltd.

All rights reserved.

<> Input = trimethoprim.sdf

<> Program options :

Using shrink-wrap isocontour surface

Fitting surface to spherical harmonics

Using an isodensity surface contour

Isodensity value = 0.2000E-04 electrons/Angstrom**3

Triangulation mesh = 0.20 Angstrom

Using multipole electrostatics
```


29

<> AM1 cal	culation for Trimethoprim
<> Fitting st	urface to spherical harmonics
<> Order(1)	RMSD
0	1.92523465
1	1.96112137
2	1.55522693
3	1.10610407
4	0.93107725
5	0.70604021
6	0.63660643
7	0.57075868
8	0.52397917
9	0.50047987
10	0.47258810
11	0.44413396
12	0.41917572
13	0.40317390
14	0.39305683
15	0.38338670
<> Spherical	harmonic fit for MEP:
<> Order(1)	RMSD
0	11.06679887
1	11.02896096
2	8.63328473
3	6.86212353
4	5.49789123
5	4.58515348
6	4.17133704
7	3.45021190
8	3.12551976
9	2.77785314
10	2.36026963
11	2.07229809
12	1.90436905
13	1.72364959
14	1.64559721
15	1.46827862
16	1.27844169
17	1.07448912
18	0.93472662
19	0.88271611
20	0.82766903
<> Spherical	harmonic fit for IE(l):
<> Order(1)	RMSD
0	56.96267883
1	50.08995849
2	45.41506823
3	43.50398342
4	40.07275301
5	35.50489297
6	32.77872159
7	26.87765240
8	23.10395662
9	19.60420788
10	17.97895259
11	16.20677848
12	15.12291903
13	14.61861765
14	13.86580806
15	13.43494797
16	13.22461242
17	12.26642783
18	12.26642783
19	12.26642783
20	12.26642783

Academic ParaSurf '10 Users' Manual

<> S <> C	Spherical Order(1)	harmonic fit RMSD	for	EA(1):
	0	12 18546245		
	1	11.86493015		
	2	11.74652208		
	3	9.50375558		
	4	8.72724156		
	5	7.28928968		
	6	7.13942468		
	7	6.79112856		
	8	6.47917898		
	9	6.02700721		
	10	5.73179346		
	11	5.46853066		
	12	5.186/3696		
	14	4.51/6/269		
	14	3 92082708		
	16	3.68234845		
	17	3.60371852		
	18	3.40232841		
	19	3.23619071		
	20	3.10610529		
<> s	Spherical	harmonic fit	for	Field(N):
	Jidei(I)	RMSD		
	0	7.95868149		
	1	7.94096053		
	2	7.17401521		
	3	6.65225208		
	4	5.99511525		
	5	5.55916448		
	6	5.41073978		
	7	5.06133734		
	8	4.86238016		
	9	4.56150/84		
	10 11	4.11U3Z91U 2 75202455		
	12	3 52058064		
	13	3 43143087		
	14	3.35170488		
	15	3.08389445		
	16	2.71006812		
	17	2.33242842		
	18	2.10812470		
	19	2.03521010		
	20	1.94087735		
<> 9	Soherical	harmonic fit	for	Alpha(l) ·
<> 0)rder(1)	RMSD	IOI	Aipina (1).
	0	0.02367600		
	1	0.01660891		
	2	0.01369187		
	3	0.01110787		
	4	0.00911432		
	с С	0.00760225		
	6 7	0.00/69335		
	8	0.00/22/38		
	9	0.00643405		
	10	0.00588639		
	-			

Academic ParaSurf '10 Users' Manual

1	0.005/4100		
1	12 0.00532006		
1	13 0 00531782		
1	0.000001402		
1	14 0.00521057		
1	15 0.00514790		
1	16 0 00514700		
L	0.00514790		
1	17 0.00514790		
1	18 0.00514790		
1	0 00514790		
1	0.00514790		
2	20 0.00514790		
<> Dro	nerty ranges.		
<> IIC	opercy ranges.		
Der	nsity : 0.3567E	-05 to 0.996	9E-04
TE ((1) : 391	.03 t.o 6	71.23
E7 ((1) -108	54 +0 -	38 27
	(1) 100	-54 00	
MEE	-48	.51 to	16.80
Alp	pha(l) : 0.2	369 to 0	.3374
Fie	eld(N) : -41	.48 to	16.61
	• • • • • • • • • • • • • • • • • • • •	. 10 00	10,01
<> Des	scriptors :		
Dir	oole moment	• 1 2486	Debve
D 1 P		. 102.00	Debye
Dib	Jorar density	. U.1936E-02	Debye.Angstrom^-3
Mol	lecular pol.	: 31.2348	Angstrom**3
Mol	lecular weight	: 290.32	
Glo	obularity	• 0 7689	
GIC	DDurarrey	. 0.7009	
Tot	tal surface area	: 469.52	Angstrom**2
Mol	lecular volume	: 644.95	Angstrom**3
Moo	at positivo MED	. 16 00	logal /mol
MOS	SC POSICIVE MEP	10.00	KCal/mol
Mos	st negative MEP	: -48.51	kcal/mol
Mea	an +ve MEP	: 5.59	kcal/mol
Moa	an -we MFP	· _10 79	kcal/mol
1466		. 10.75	
Mea	an MEP	: -3.13	kcal/mol
MEE	P range	: 65.31	kcal/mol
MEE	P +ve Variance	• 10.80	(kcal/mol)**2
MET	- vo Variando	. 04.42	(lroal/mol) **?
MEE	e -ve variance	. 94.42	(KCal/mol) ~~ Z
MEE	P total variance	: 105.22	(kcal/mol)**2
MEE	P balance parameter	: 0.0921	
MFE	D halance trariance	• 9 6913	kcal/mol
NE			Kedi/moi
MEE	Pskewness	: -1.1819	
MEE	P kurtosis	: 1.3877	
Int	tegral MEP	: -1166.29	kcal.Angstrom**2/mol
	5		
М	rimum TF(1)		kaal /mol
мах	KIMUM IE(I)	. 0/1.23	KCd1/mO1
Mir	nımum IE(l)	: 391.03	kcal/mol
Mea	an IE(l)	: 475.67	kcal/mol
TE ((1) range	: 280.20	kcal/mol
	(1) wariango	. 200.20	(kapl/mol) **2
工店 ((1) Varialice	. 3233.34	(KCal/mOl) ~~ 2
IE ((1) skewness	: 0.6768	
IE ((l) kurtosis	: -0.2286	
Tnt	egral IE(1)	• 9649 93	eV Angstrom**2
1110			
		oo	
Мах	KIMUM EA(I)	: -38.27	kcal/mol
Mir	nimum EA(l)	: -108.54	kcal/mol
Mea	an tve EA(I)	: 0 00	kcal/mol
Mea	an +ve EA(1)	: 0.00	kcal/mol
Mea Mea	an +ve EA(l) an -ve EA(l)	: 0.00 : -93.87	kcal/mol kcal/mol
Mea Mea Mea	an +ve EA(l) an -ve EA(l) an EA(l)	: 0.00 : -93.87 : -93.87	kcal/mol kcal/mol kcal/mol
Mea Mea Mea EA (an +ve EA(l) an -ve EA(l) an EA(l) (l) range	: 0.00 : -93.87 : -93.87 : 70.28	kcal/mol kcal/mol kcal/mol kcal/mol
Меа Меа ЕА(ЕА)	an +ve EA(l) an -ve EA(l) an EA(l) (l) range (l) +ve variance	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol) **2</pre>
Mea Mea EA (EA (an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2</pre>
Mea Mea EA (EA (an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2</pre>
Mea Mea EA (EA (EA (EA (an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance (1) total variance	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43 : 142.43	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2</pre>
Mea Mea EA (EA (EA (EA (EA (an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance (1) total variance (1) skewness	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43 : 142.43 : 1.7819	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2</pre>
Меа Меа ЕА (ЕА (ЕА (ЕА (ЕА (<pre>an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance (1) total variance (1) skewness (1) kevtosis</pre>	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43 : 142.43 : 1.7819 : 4.1713	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2</pre>
Mea Mea EA (EA (EA (EA (EA (<pre>an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance (1) total variance (1) skewness (1) kurtosis cagral EA(1)</pre>	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43 : 142.43 : 1.7819 : 4.1713 : -1913 50	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2</pre>
Mea Mea EA (EA (EA (EA (EA (Int	<pre>an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance (1) total variance (1) skewness (1) kurtosis tegral EA(1)</pre>	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43 : 142.43 : 142.43 : 1.7819 : 4.1713 : -1913.50	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2</pre>
Mea Mea EA (EA (EA (EA (EA (Int EA (<pre>an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance (1) total variance (1) skewness (1) kurtosis tegral EA(1) (1) balance param.</pre>	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43 : 142.43 : 142.43 : 1.7819 : 4.1713 : -1913.50 : 0.0000	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2</pre>
Mea Mea EA (EA (EA (EA (EA (Int EA (Fra	<pre>an +ve EA(1) an -ve EA(1) an EA(1) (1) range (1) +ve variance (1) -ve variance (1) total variance (1) skewness (1) kurtosis tegral EA(1) (1) balance param. action pos. EA(1)</pre>	: 0.00 : -93.87 : -93.87 : 70.28 : 0.00 : 142.43 : 142.43 : 1.7819 : 4.1713 : -1913.50 : 0.0000 : 1.0000	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2 eV.Angstrom**2 (= 469.52 Angstrom**2)</pre>

Figure 9 continued

Max. loca Min. loca Mean loca Local Ene Local Ene Local Ene Local Ene	al Eneg. al Eneg. al Eneg. eg. range eg. variance eg. skewness eg. kurtosis	: 299. : 143. : 190. : 156. : 958. : 0. : 0.	61 kcal/mol 17 kcal/mol 90 kcal/mol 44 kcal/mol 85 (kcal/mol 82 01)**2		
Integral Max. loca Min. loca	local Eneg. al hardness al hardness	: 3868.21 : 371. : 247.	eV.Angstr 63 kcal/mol 42 kcal/mol	rom**2		
Mean loca Local han Local han Local han	al hardness rd. range rd. variance rd. skewness	: 284. : 124. : 729. : 0.	77 kcal/mol 21 kcal/mol 04 (kcal/mol 58)**2		
Local hai Integral	rd. kurtosis local Hard.	: -0. : 5781.71	48 eV.Angstr	om**2		
Maximum a Minimum a Mean alph Alpha(l) Variance Alpha(l) Alpha(l) Integral	alpha(l) alpha(l) na(l) range in alpha(l) skewness kurtosis Alpha(l)	: 0.3374 : 0.2369 : 0.2821 : 0.1005 : 0.5455E- : -0.78 : -0.61 : 132.761	Angstrom* Angstrom* Angstrom* 03 Angstrom* 08 45 Angstrom*	*3 *3 *3 *6 *5		
Maximum : Minimum : Mean fiel Field ran Total fie +ve field Field ba Field ske Field ku Integral Integral Integral	field normal field normal ld hge eld variance d variance lance param. ew rtosis F(N) F(N +ve) F(N -ve) F(N)	: 16.61 k : -41.48 k : -0.45 k : 58.09 k : 63.25 (: 6.65 (: 66.54 (: 0.08 : 2.34 : 4.278 : 51.51 : 1332. : -1281. : 2613.	cal/mol.Angs cal/mol.Angs cal/mol.Angs kcal/mol.Angs kcal/mol.Ang kcal/mol.Ang kcal/mol.Ang kcal.Angst kcal.Angst kcal.Angst	trom trom trom strom)**2 strom)**2 strom)**2 strom)**2 		
<> Spherical	l-Harmonic Hy	bridization:				
Shape hyl 17.576151 0.752068 0.254783	orids 1.110861 0.688202 0.212811	: 3.450758 0.462321 0.209028	2.848775 0.389758 0.200477	1.410632 0.387721	1.602015 0.318766	
MEP hybr: 13.217889 7.220981 2.541562 1.474428	ids 4.729529 8.124247 2.738907 1.035562	: 26.188350 4.622006 1.629285 1.017963	18.489609 4.919896 2.033261	13.992226 4.395234 1.920217	10.724730 3.580830 1.871438	
IE(l) hył 1698.1619 53.6317 19.8380 14.7771	orids 90.2420 54.9183 15.9993 0.0000	: 81.3581 40.0437 18.4093 0.0000	62.4739 44.6963 15.7391	59.3195 25.5245 14.4282	54.6003 24.8963 16.4144	
EA(l) hył 324.0302 8.5527 5.1376 3.7363	orids 6.1868 9.0223 7.5750 3.6150	: 12.8590 8.0923 5.6376 3.4503	25.9665 7.5131 4.4820	13.9365 6.2313 4.8386	16.5139 5.3970 3.7336	
Alpha(l) 1.01371172 0.01197223 0.00682204 0.00000000	hybrids 0.05270984 0.00890841 0.00625396 0.00000000	: 0.03338628 0.00764054 0.00851990 0.00000000	0.02985029 0.00889521 0.00656432	0.02186603 0.00767265 0.00000000	0.01485299 0.00638097 0.00000000	

	Field 2.6 6.0 4.7 3.3	l(N) hybi 5423 1754 299 6698	rids 1.8631 7.7827 4.2978 2.1922	: 13.5 5.4 2.4 1.9	263 503 961 336	10.4406 5.8168 3.4376	10.4 5.6 3.8	1941 5348 3431	8.0651 5.4245 4.0455			
<>	Stand and D	lard rota). W. Rit	ationally tchie, J.	invaria Chem. I	nt finge nf. Mode	erprint:(1 el., 2007,	L. Mavri , 47, 17	dis, B. 87-1796.	D. Hudso:)	n		
	4.1 1.2 4.2 2.1 41. 7.3 5.0 0.22 0.10 3.2 2.4	9239 6571 9995 4989 2088 8920 9574 9586 9418 3946 1180	1.05397 0.867219 3.74062 2.21808 9.49958 7.32337 3.73317 0.182719 1.62552 2.83992 2.37377	1.8 3.6 3.2 2.0 9.0 18. 4.0 0.17 1.3 2.4 2.3	5762 3564 7486 9648 1987 0008 6373 2772 6495 6484 2906	1.68783 2.17475 2.68719 1.89231 7.90404 2.48732 2.92450 0.147872 3.67782 2.78974 2.17484	1.1 5.1 2.8 1.5 7.7 3.5 1.0 0.12 3.2 2.3	.8770 1746 35031 99423 70191 58595 90683 21873 23120 33458				
~~	ACOIII	.c Sulla	ce proper	LIES.								
P	Atom	Area	MI	EP	IE	:(1)	EA	A(1)	mean	Fie	ld(N)	
С	1	0.000	max	min	max	min	max	min	pol.	max	min	
0	2	0.073	-38.63	-41.63	535.57	533.00	-77.38	-79.30	0.260	-21.49	-27.99	
C	3 4	3.380	-6.37	-46.93	578.39	4/4.06	-41.34	-89.55	0.307	-2.87	-30.99	
C	5	0.699	-8.34	-13.91	573.56	531.88	-83.99	-92.50	0.320	-1.60	-7.33	
С	6	0.000	0.01				=4 60				0 5 6	
C	./	0.803	-9.81	-15.04	559.06 585 08	516.48 484 62	-71.63	-91.20	0.319	-2.88	-9.76	
N	9	4.183	-14.72	-32.41	535.62	452.64	-79.87	-104.94	0.279	-13.08	-41.48	
С	10	10.329	-1.83	-27.19	633.65	532.84	-38.83	-86.77	0.284	3.35	-26.41	
N	11	0.000	-14 68	-33 29	537 97	172 79	-74 67	-98 55	0 268	-16 13	-37 17	
C	13	6.263	-8.51	-26.50	636.94	512.98	-38.27	-82.53	0.286	-0.32	-26.69	
Ν	14	0.000										
C	15 16	2.104	-7.01	-15.40	589.73	496.26	-64.25	-92.16	0.316	-3.39	-9.83	
0	17	0.000	11.00	13.10	505.47	-//.//	40.02	05.05	0.510	4.70	55.25	
С	18	0.000										
С	19	6.191	-17.34	-48.51	583.26	465.76	-46.51	-85.87	0.315	-6.05	-34.36	
C	20	2.039	-31.11	-44.39	332.30	443.12	-73.33	-93.13	0.24/	-13.30	-34.31	
Н	22	32.635	13.06	-39.51	560.91	405.93	-82.22	-99.65	0.297	8.87	-25.66	
H	23	21.584	14.07	-20.11	561.95	408.24	-83.73	-96.09	0.294	9.65	-28.49	
Н	25	6.870	11.16	-5.33	527.22	425.98	-83.09	-95.66	0.293	7.63	-5.92	
Н	26	18.506	7.90	-7.44	535.28	400.17	-87.74	-100.67	0.300	5.64	-5.92	
Η	27	17.885	7.35	-20.61	543.51	399.68	-68.57	-100.82	0.303	4.52	-21.74	
H	28	26.817	8.86	-27.87	536.72	413.57	-60.29	-103.43	0.284	5.88	-32.28	
Н	30	32.854	16.44	-28.19	669.05	476.80	-72.56	-107.92	0.240	16.30	-32.17	
Н	31	33.925	11.44	-28.94	657.13	471.46	-67.51	-108.53	0.244	12.43	-35.12	
Н	32	9.936	11.30	-27.10	641.75	472.59	-73.11	-99.95	0.258	12.66	-34.70	
H	33	5.297	9.88	-13.59	504.99	434.61	-73.78	-96.58	0.295	7.73	-9.33	
н Н	34 35	∠9.288 23.557	⊥⊥.33 11 45	-4U.38 -33 33	204.99 567 57	400.94 407 56	-00.27	-99.69 -95.67	0.291 0.293	/.86 8 06	-33.46 -23.22	
H	36	23.013	11.40	-13.11	563.83	407.55	-81.57	-99.02	0.295	8.02	-12.33	
Н	37	33.967	4.59	-38.60	554.53	394.86	-87.16	-108.54	0.295	4.15	-30.30	
H	38	18.879	4.19	-40.99	558.76	396.53	-84.56	-108.22	0.298	3.76	-25.13	
H	39	26.447	3.97	-34.03	550.40	391.03	-86.19	-107.60	0.296	3.63	-26.93	
Tot	al	465.463										
<>	ParaS	urf used	ł	6.86 se	conds CF	VU time						

ParaSurf'10[™] first fits the calculated shrink-wrap surface at full resolution for each of the local properties. It lists the root-mean-square deviations (RMSDs) for the surface points as a function of the order of the spherical-harmonic expansion, first for the geometry of the surface and then for each of the five local properties. The RMSD values give an idea of how well each order of the spherical-harmonic expansion fits the calculated shrink-wrap surface or the relevant property. The highest order used by ParaSurf[™] is 15 for the surface itself and 20 for each property.

The descriptor table is then printed. For molecules with no surface areas with positive EA_L, $\sigma_{FA_L}^2$ is set to zero. The descriptors are those described in Table 1.

The spherical-harmonic hybridization coefficients are then listed for the shape and the five local properties. The coefficients are listed by increasing *l* starting from zero. The standard rotationally invariant fingerprint (RIF) [32] is printed. Note that the individual RIF-values correspond to the square roots of the hybridization coefficients from the tables above and that the RIF definition has been expanded to include hybridization coefficients of the field normal to the surface (the last 13 elements).

The table of atomic surface properties is derived by first finding the atom that contributes most (according to a Coulson analysis) to the electron density for each surface point. The point is then assigned to this atom and the maxima and minima in the MEP, IE_L , EA_L and F_N as well as the mean local polarisability for the points assigned to each atom are calculated. Note that, because of the fitting procedure, the values reported in this table may contain spurious ones if the fitted surface comes particularly close to an atom (or does not approach it). This situation is generally recognisable from the RMSD values printed for the fit. The surface used to calculate the descriptors and atomic-surface properties is the fitted spherical-harmonic surface of order 15.

3.4.2 For a marching-cube surface

Figure 10 shows the output for a calculation using the options **surf=cube** for trimethoprim.

```
<> ParaSurf'10 Academic Version
 <> Copyright (c) 2006,2007,2008,2009,2010 Friedrich-Alexander-Universitaet
                                          Erlangen-Nuernberg and Cepos InSilico Ltd.
                                          All rights reserved.
 <> Input = trimethoprim.sdf
 <> Program options :
        Using marching-cube isodensity surface
        Surface fitting turned off
        Using an isodensity surface contour
         Isodensity value = 0.3000E-03 electrons/Angstrom**3
         Triangulation mesh = 0.20 Angstrom
        Using multipole electrostatics
 <> AM1 calculation for Trimethoprim
 <> Number of triangles = 15024
 <> Number of unique points :
                                                                            7517
 <> Property ranges:
        Density : 0.2879E-03 to 0.3111E-03
IE(1) : 392.33 to 654.93
                                          392.33 to 654.93
-109.82 to -28.98
-69.91 to 24.82
                            :
        EA(1)
        MEP

        MEP
        :
        -69.91 to
        24.82

        Alpha(l)
        :
        0.2288 to
        0.3302

        Field(N)
        :
        -106.67 to
        72.35

 <> Descriptors :
       Dipole moment : 1.2486 Debye
Dipolar density : 0.3160E-02 Debye.Angstrom**-3
Molecular pol. : 31.2348 Angstrom**3
Molecular weight : 290.32
Globularity : 0.7042
Total surface area : 369.81 Angstrom**2
Molecular volume : 395.14 Angstrom**3
       Most positive MEP : 24.82 kcal/mol

Most negative MEP : -69.91 kcal/mol

Mean +ve MEP : 9.04 kcal/mol

Mean -ve MEP : -18.73 kcal/mol

Mean MEP : -4.94 kcal/mol

MEP range : 94.73 kcal/mol

MEP +ve Variance : 31.62 (kcal/mol)**2

MEP -ve Variance : 240.01 (kcal/mol)**2

MEP total variance : 271.63 (kcal/mol)**2

MEP balance parameter: 0.1028

MEP balance*variance : 27.9357 kcal/mol

MEP skewness : -1.0235

MEP kurtosis : 0.6089

Integral MEP : -1674.03 kcal.Angstrom*
                                                 : -1674.03
        Integral MEP
                                                                                               kcal.Angstrom**2/mol

      Maximum IE(1)
      :
      654.93 kcal/mol

      Minimum IE(1)
      :
      392.33 kcal/mol

      Mean IE(1)
      :
      486.25 kcal/mol

      IE(1)
      :
      486.25 kcal/mol

      IE(1)
      :
      262.60 kcal/mol

      IE(1)
      variance
      :
      3586.57 (kcal/mol)**2

      IE(1)
      skewness
      :
      0.4205

      IE(1)
      kurtosis
      :
      -0.7628

      Integral IE(1)
      :
      7764.79
      eV.Angstrom**2
```


Academic ParaSurf '10 Users' Manual

36

Maximum EA(1)	:	-28.98	3 kcal/mol
Minimum EA(l)	:	-109.82	2 kcal/mol
Mean +ve EA(l)	:	0.00) kcal/mol
Mean -ve FA(1)		-89 08	R kcal/mol
Mean FA(1)	÷	00.00	2 kaal/mol
Mean EA(1)	:	-89.08	5 KCal/mol
EA(l) range	:	80.83	3 kcal/mol
EA(l) +ve variance	:	0.00) (kcal/mol)**2
EA(1) -ve variance	•	276.48	3 (kcal/mol)**2
$E\lambda(1)$ total wariand		276 40	$\frac{1}{2} (\frac{1}{2} - \frac{1}{2}) + \frac{1}{2}$
EA(1) COCAI VALIANCE	•	1 4 6 1 6	CKCal/mol/ 2
EA(1) SKEWNESS	:	1.4612	2
EA(l) kurtosis	:	1.5705	5
Integral EA(l)	:	-1438.96	eV.Angstrom**2
EA(1) balance param	•	0.000)
Eraction nos EN(1)		1 0000	$(-360.91$ λ pagetrom**2)
FIACCION POS. EA(I)	•	1.0000	J (= 505.01 Augstron ~2)
Max. local Eneg.	:	290.20) kcal/mol
Min. local Eneg.	:	143.77	7 kcal/mol
Mean local Eneg.	:	198.59	9 kcal/mol
Local Eneg range		146 43	3 kcal/mol
Local Energy Hange	. :	1206 40) /lcol/mol) **0
Local Eneg. variance	: :	1200.49	Ø (KCd⊥/IIIO⊥)^^∠
Local Eneg. skewness	3 :	0.52	2
Local Eneg. kurtosis	3 :	-0.78	3
Integral local Eneg.	:	3162.92	eV.Angstrom**2
5			5
Max local hardness		371 14	4 kcal/mol
Min local hardness	÷	217 00) keel/mol
Mill. IOCal Haluless	•	247.03	
Mean local hardness	:	287.6	/ kcal/mol
Local hard. range	:	123.25	5 kcal/mol
Local hard. variance	: :	725.03	3 (kcal/mol)**2
Local hard skewness		0 4	5
Local hard kurtosi		-0.64	
IDCal Hard, Kurtosia	•	4.001 07	J Jametrentto
		4601.87	ev.Angstrom^~2
Integral local Hard.	•		
Integral local Hard.	•	0.0000	
Integral local Hard. Maximum alpha(l)	:	0.3302	Angstrom**3
Integral local Hard. Maximum alpha(l) Minimum alpha(l)	:	0.3302 0.2288	Angstrom**3 Angstrom**3
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l)	:	0.3302 0.2288 0.2830	Angstrom**3 Angstrom**3 Angstrom**3
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range	:	0.3302 0.2288 0.2830 0.1014	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l)	:	0.3302 0.2288 0.2830 0.1014	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**6
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l)	:	0.3302 0.2288 0.2830 0.1014 0.4904E-03	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness	: : : : : : : : : : : : : : : : : : : :	0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6
Integral local Hard. Maximum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis	: : : : : : : : : : : : : : : : : : : :	0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l)	: : : : : : : : : : : : : : : : : : : :	0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**6 Angstrom**5
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l)		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504	Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 Angstrom**5
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 Angstrom**5 Angstrom**5
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**6 3 Angstrom**5 Angstrom*5 al/mol.Angstrom al/mol.Angstrom
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 5 Angstrom**5 al/mol.Angstrom al/mol.Angstrom
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 5 Angstrom**5 al/mol.Angstrom al/mol.Angstrom
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 Angstrom**5 Angstrom**5 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 5 Angstrom**5 al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**6 Angstrom**5 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance -ve field variance		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 B Angstrom**6 Angstrom**5 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance Field balance param.		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc 0.05)	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(1) Minimum alpha(1) Mean alpha(1) Alpha(1) range Variance in alpha(1) Alpha(1) skewness Alpha(1) kurtosis Integral Alpha(1) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance Field balance param. Field skew		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc 0.05 2.74	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 5 Angstrom**5 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance Field balance param. Field skew Field skew		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc 0.05 2.74	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**6 Angstrom**5 al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance Field balance param. Field skew Field kurtosis		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc 0.05 2.74 6.578	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 5 Angstrom**5 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance -ve field variance Field balance param. Field skew Field kurtosis Integral F(N)		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kcz -106.67 kcz -0.35 kcz 179.02 kcz 398.24 (kc 35.02 (kc 35.02 (kc 585.33 (kc 0.05 2.74 6.578 69.53	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(1) Minimum alpha(1) Mean alpha(1) Alpha(1) range Variance in alpha(1) Alpha(1) skewness Alpha(1) kurtosis Integral Alpha(1) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance Field balance param. Field skew Field kurtosis Integral F(N) Integral F(N +ve)		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc 0.05 2.74 6.578 69.53 2364.	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 3 Angstrom**6 3 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 kcal.Angstrom/mol kcal.Angstrom/mol
Integral local Hard. Maximum alpha(l) Minimum alpha(l) Mean alpha(l) Alpha(l) range Variance in alpha(l) Alpha(l) skewness Alpha(l) kurtosis Integral Alpha(l) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance Field balance param. Field skew Field skew Field kurtosis Integral F(N) Integral F(N +ve) Integral F(N -ve)		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8023 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc 0.05 2.74 6.578 69.53 2364. -2295.	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**6 Angstrom**5 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2
Integral local Hard. Maximum alpha(1) Minimum alpha(1) Mean alpha(1) Alpha(1) range Variance in alpha(1) Alpha(1) skewness Alpha(1) kurtosis Integral Alpha(1) Maximum field normal Minimum field normal Mean field Field range Total field variance +ve field variance Field balance param. Field skew Field kurtosis Integral F(N) Integral F(N +ve) Integral F(N)		0.3302 0.2288 0.2830 0.1014 0.4904E-03 -0.8022 -0.3815 104.504 72.35 kca -106.67 kca -0.35 kca 179.02 kca 398.24 (kc 35.02 (kc 585.33 (kc 0.05 2.74 6.578 69.53 2364. -2295. 4659.	Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**3 Angstrom**6 Angstrom**5 al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom al/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2 cal/mol.Angstrom)**2

Figure 10 continued

At	com	Area	М	EP	IE	(1)	EA(1)	mean	Fie	ld(N)
			max	min	max	min	max min	pol.	max	min
С	1	0.255	-24.20	-46.87	569.21	546.16	-81.57 -92.67	0.268	-7.45	-44.94
0	2	3.663	-15.51	-69.27	594.82	456.70	-63.60 -81.53	0.269	23.64	-106.67
С	3	6.489	-7.34	-64.83	642.96	499.79	-30.30 -99.31	0.304	1.34	-84.49
С	4	2.172	-3.32	-19.78	631.80	493.54	-40.13 -100.66	0.316	-2.82	-20.02
С	5	1.621	-2.14	-18.29	633.57	546.99	-53.30 -100.26	0.313	3.29	-11.55
С	6	0.000								
С	7	2.050	-4.01	-22.32	605.59	512.50	-50.08 -91.07	0.317	0.14	-26.55
С	8	5.598	4.10	-28.25	638.27	488.28	-35.86 -88.17	0.288	9.86	-29.36
Ν	9	6.696	-19.85	-58.79	571.47	417.77	-54.64 -103.25	0.260	-14.68	-93.22
С	10	9.420	-0.80	-46.25	654.93	543.27	-41.16 -81.01	0.280	13.28	-61.33
Ν	11	0.536	-46.54	-53.02	615.74	593.92	-60.29 -79.02	0.276	-60.55	-81.55
Ν	12	6.115	-16.63	-55.65	571.35	417.33	-51.08 -98.91	0.247	-15.21	-91.12
С	13	7.551	-10.11	-44.06	644.97	527.96	-37.44 -82.79	0.284	10.94	-58.77
Ν	14	0.713	-41.89	-57.14	618.69	590.74	-64.83 -81.20	0.287	-40.63	-95.16
С	15	4.193	-8.08	-22.32	640.33	494.10	-30.85 -100.79	0.314	0.50	-22.28
C	16	5.831	-15.48	-61.39	641.08	507.48	-28.98 -94.37	0.307	0.56	-75.79
0	17	1.251	-18.69	-69.91	566.92	464.96	-64.24 -87.63	0.252	-11.13	-104.49
С	18	0.290	-16.74	-56.74	573.31	531.64	-74.36 -94.92	0.267	-7.21	-55.54
Ĉ	19	5.583	-15.50	-60.30	617.67	492.45	-39.17 -96.41	0.314	-0.58	-50.34
0	2.0	3.968	-31.04	-63.58	581.05	438.59	-68.75 -94.46	0.265	-3.30	-76.06
Ċ	21	0.545	-26.28	-54.85	563.65	530.77	-90.80 -106.12	0.269	-0.65	-62.76
Н	2.2	20.849	22.24	-44.01	561.09	407.48	-83.43 -97.55	0.297	19.34	-39.51
Н	2.3	16.018	22.20	-47.62	566.04	408.23	-70.44 -97.22	0.293	19.83	-89.24
Н	2.4	16.231	22.21	-45.82	567.70	407.67	-66.85 -96.73	0.291	19.67	-51.22
Н	2.5	7.150	16.35	-8.07	537.75	430.17	-70.34 -97.50	0.287	14.85	-11.83
Н	2.6	13.485	13.09	-5.84	570.04	401.19	-85.82 -100.62	0.299	9.80	-10.05
Н	2.7	13.124	11.65	-38.34	610.80	400.49	-74.20 -100.86	0.301	13.51	-51.85
Н	2.8	17.543	13.34	-29.83	533.67	415.37	-53.69 -100.29	0.282	18.51	-31.14
н	29	20.142	24.45	-44.08	639.93	488.10	-72.39 -107.70	0.247	33.70	-70.29
Н	30	20.327	24.82	-48.23	644.32	488.09	-70.46 -107.77	0.241	29.18	-71.86
Н	31	20.033	22.74	-51.84	642.48	483.81	-67.40 -108.33	0.245	32.52	-81.11
Н	32	10.797	22.33	-49.42	644.51	478.85	-79.21 -102.14	0.258	26.11	-87.40
н	33	7.985	15.01	-21.60	523.96	429.37	-65.63 -98.60	0.294	10.93	-18.28
Н	34	20.354	17.51	-31.88	560.04	408.30	-87.92 -99.03	0.290	18.83	-16.57
н	35	16.207	17.81	-47.27	565.70	408.17	-66.88 -96.52	0.291	15.15	-40.08
Н	36	16.208	17.77	-37.50	557.34	408.12	-69.21 -96.79	0.294	15.10	-55.02
Н	37	20.706	8.06	-41.68	545.25	396.03	-95.88 -109.82	0.294	10.46	-27.25
Н	38	16.212	8.06	-54.60	594.17	394.19	-82.67 -109.53	0.296	72.35	-73.80
H	39	18.662	7.90	-40.12	586.35	392.33	-74.88 -109.41	0.295	26.55	-32.47
Tota	al	366.571								
$\langle \rangle$ 1	ParaS	urf used		5.75 se	conds CP	II time				

The table of RMSD values is no longer printed and the range of the electron-density values for the surface points (a test for the quality of the surface) is closer to the target isodensity value (in this case 0.0003 e^{-Å-3}) than for the fitted surface. The internal precision used by the program is \pm 2% of the target isodensity value. The values of the descriptors and the atomic-surface properties are more consistent using the marching-cube surface and are recommended for QSPR and surface-integral applications.

3.4.3 For a job with Shannon entropy^{*} 3.4.4 For a job with autocorrelation similarity^{*}

^{*} Only available in the full version.

3.5 ParaSurf[™] SDF-output

The SDF output file (a fixed-format file) contains additional blocks with the information generated by ParaSurf[™]. These are:

<ParaSurf OPTIONS>

The ParaSurf[™] OPTIONS block consists of one line giving the options used in the ParaSurf[™] calculation. These are:

```
<surface> <fit> <electrostatic model> <isodensity level> (a4,2x,a4,2x,a5,2x,f8.3)
```

Where the individual variables can be:

<surface></surface>	WRAP	Shrink-wrap surface						
	CUBE	Marching-cube surface						
<fit></fit>	NONE	No fitting, unsmoothed marching-cube surface						
	ISO	Marching-cube surface corrected to $\pm2\%$ of the						
		preset isodensity value						
	SPHH	Spherical-harmonic surface fit						
<pre><electrostatic model=""></electrostatic></pre>	NAOPC	NAO-PC electrostatics						
	MULTI	Multipole electrostatics						
<isodensity level=""></isodensity>	n.nn	The target isodensity value in e ⁻ Å ⁻³						
		The radius of the solvent probe used to						
<pre><solvent probe="" radius=""></solvent></pre>		calculate the SES or SAS						
(the second still mark)		The mesh size used to triangulate the						
<pre><rrangulation mesn=""></rrangulation></pre>		Surface						

<MOLECULAR CENTERS>

The molecular centres block appears only for calculations that use spherical harmonic fits. It includes two lines of the form:

"Spherical harmonic center = ", 3f12.6
"Center of gravity = ", 3f12.6

These blocks give the x, y and z coordinates of the centre of the molecule used for the sphericalharmonic fit and the centre of gravity, respectively. These two centres are usually identical, but may be different if the centre of gravity lies outside the molecule (e.g. for U-shaped molecules).

<SPHERICAL HARMONIC>

The spherical harmonic fits are described in **SPHERICAL_HARMONIC_....>** blocks. These blocks all have the same format and vary only in the property described. Each block has the form:

The spherical harmonic fits are described in <SPHERICAL_HARMONIC_....> blocks. These blocks all have the same format and vary only in the property described. Each block has the form:

Order = nn	("Order = ",i4)
$l(c_l^m)m = -1 \text{ to } 1$	(I5, 10f8.4/5x,10f8.4/5x,10f8.4/5x,10f8.4) (One set of coefficients each for 1 = 1 to 15)
RMSDs: 1, RMSD ¹ , RMSD ²	("RMSDs:") (i8, 2f12.8) (One line for each 1 for 1 = 1 to 15, where RMSD ¹ is the area-weighted RMSD and RMSD ² the simple RMSD)

There are six such blocks, indicated by the tags:

<pre><spherical_harmonic_surface></spherical_harmonic_surface></pre>	The fitted molecular surface (radial distances) in Ångstrom
<pre><spherical_harmonic_mep></spherical_harmonic_mep></pre>	The MEP values at the spherical-harmonic surface ($1 = 20$) in kcal mol ⁻¹
<pre><spherical_harmonic_ie(1)></spherical_harmonic_ie(1)></pre>	The IE _L values at the spherical-harmonic surface (1 = 20) in kcal mol ⁻¹
<pre><spherical_harmonic_ea(1)></spherical_harmonic_ea(1)></pre>	The EA _L values at the spherical-harmonic surface ($1 = 20$) in kcal mol ⁻¹
<pre><spherical_harmonic_alpha(1)></spherical_harmonic_alpha(1)></pre>	The α_L values at the spherical-harmonic surface (${\it l}$ = 20) in kcal mol 1
<pre><spherical_harmonic_field(n)></spherical_harmonic_field(n)></pre>	The FN values at the spherical-harmonic surface (I = 20) in kcal mol-1 Å-1

<ParaSurf Descriptors>

The ParaSurf[™] descriptors block lists the calculated descriptors in the following groups:

Molecular:	μ , μ _D , α , MW, G, A, VOL
	("Molecular ",5f10.4,2f10.2)
MEP:	V_{\max} , V_{\min} , $\overline{V_+}$, \overline{V} , \overline{V} , ΔV , σ_+^2 , σ^2 , σ_{Tot}^2 , ν , $\sigma_{tot}^2 \nu$, γ_1^V , γ_2^V , \int_V
	("MEP ",7f10.2/10x, f10.2,5f10.4,2x,g12.6)
IE(I):	$I\!E_L^{ m max}$, $I\!E_L^{ m min}$, $\overline{I\!E_L}$, $\Delta I\!E_L$, $\sigma_{I\!E}^2$, $\gamma_1^{I\!E}$, $\gamma_2^{I\!E}$, $\int_{I\!E}$
	("IE(1) ",5f10.2,2f10.4/12x,g12.6)
EA(I):	EA_{L}^{\max} , EA_{L}^{\min} , EA_{L+} , EA_{L-} , EA_{L} , ΔEA_{L} , σ_{EA+}^2 , σ_{EA-}^2 , σ_{EA}^2 , V_{EA} , δA_{EA}^+ , A_{EA}^+ , γ_1^{EA} ,
	γ_2^{EA} , J_{EA}
	("EA(1) ",7f10.2/2f10.2,2f10.4,f10.2,2f10.4/12x,g12.6)
Eneg(I):	$\chi_L^{ m max}$, $\chi_L^{ m min}$, χ_L , $\Delta \chi_L$, σ_χ^2 , γ_1^χ , γ_2^χ , \int_χ
	("Eneg(1) ",5f10.2,2f10.4/12x,g12.6)
Hard(I):	$\eta_L^{ ext{max}}$, $\eta_L^{ ext{min}}$, $\overline{\eta_L}$, $\Delta\eta_L$, σ_η^2 , γ_1^η , γ_2^η , \int_η
	("Hard(l) ",5f10.2,2f10.4/12x,g12.6)
Alpha(I):	α_L^{\max} , α_L^{\min} , $\overline{\alpha_L}$, $\Delta \alpha_L$, σ_{α}^2 , γ_1^{α} , γ_2^{α} , \int_{α}
	("Alpha(l) ",5f10.2,2f10.4/12x,g12.6)
F _N	F_N^{\max} , F_N^{\min} , $\overline{F_N}$, σ_F^2 , $\sigma_{F^+}^2$, $\sigma_{F^-}^2$, V_F , $\gamma_1^{F_N}$, $\gamma_2^{F_N}$, $\int_{F_N}^+$, $\int_{F_N}^+$, $\int_{F_N}^-$, \int_{F_N}
	("Field desc",7f10.4/" ",6f10.4)

For calculations using a spherical-harmonic fit, the hybridization coefficients are printed to the .sdf file as follows (tag line followed by as many lines with the coefficients as necessary):

<SHAPE HYBRIDS>
<MEP HYBRIDS>
<IE(L) HYBRIDS>

(15 coefficients,	6f12.6)
(20 coefficients,	6f12.6
(20 coefficients,	6f12.2)

Academic ParaSurf '10 Users' Manual

<ea(l) hybrids=""></ea(l)>	(20 coefficients, 6f12.2)
<alpha(l) hybrids=""></alpha(l)>	(20 coefficients, 6f12.8)
<field(n) hybrids=""></field(n)>	(20 coefficients, 6f12.4)

The hybridization coefficients are listed in order of increasing / from zero, exactly as in the output file.

The atomic surface properties are listed in the atomic order according to the following headings (tag line followed by as many lines with the surface properties as necessary):

<a>ATOMIC	SURFACE	AREAS>
<a>ATOMIC	SURFACE	MEP MAXIMA>
<a>ATOMIC	SURFACE	MEP MINIMA>
<atomic< td=""><td>SURFACE</td><td>IE(L) MAXIMA></td></atomic<>	SURFACE	IE(L) MAXIMA>
<atomic< td=""><td>SURFACE</td><td>IE(L) MINIMA></td></atomic<>	SURFACE	IE(L) MINIMA>
<atomic< td=""><td>SURFACE</td><td>EA(L) MAXIMA></td></atomic<>	SURFACE	EA(L) MAXIMA>
<atomic< td=""><td>SURFACE</td><td>EA(L) MINIMA></td></atomic<>	SURFACE	EA(L) MINIMA>
<atomic< td=""><td>SURFACE</td><td>MEAN POL></td></atomic<>	SURFACE	MEAN POL>
<a>ATOMIC	SURFACE	FIELD(N) MAXIMA>
<a>ATOMIC	SURFACE	FIELD(N) MINIMA>

Areas	(10f8.4)
MEP maxima	(10f8.2)
MEP minima	(10f8.2)
IE(I) maxima	(10f8.2)
IE(I) minima	(10f8.2)
EA(I) maxima	(10f8.2)
EA(I) minima	(10f8.2)
Mean pol.	(10f8.4)
FN maxima	(10f8.2)
FN minima	(10f8.2)

<STANDARD RIF>

The rotationally invariant fingerprint [32] is printed as a list of 54 floating point numbers (5g12.6). The first 41 are those defined in reference [32] and the last 13 are the square roots of the hybridization coefficients for the normal field from k=0-12.

Hard(I)	η_L^{\max} , η_L^{\min} , $\overline{\eta_L}$, $\Delta \eta_L$, σ_η^2 , γ_1^η , γ_2^η , \int_η	
	("Ha	ard(l) ",5f10.2,2f10.4/12x,g12.6)
Alpha(l)	α_L^{\max} , α_L^{\min} , $\overline{\alpha_L}$, $\Delta \alpha_L$, σ_{α}^2 , γ_1^{α} , γ_2^{α} , \int_{α}	
	("Al	pha(1) ",5f10.2,2f10.4/12x,g12.6)
F _N	$F_N^{ m max}$, $F_N^{ m min}$, ΔF_N , $\overline{F_N}$, σ_F^2 , $\sigma_{F^+}^2$, $\sigma_{F^-}^2$, $ u_F$, $ au_F$	$\gamma_1^{F_N}$, $\gamma_2^{F_N}$, \int_{F_N} , $\int_{F_N}^+$, $\int_{F_N}^-$
	("Field	d desc",7f10.4/" ",6f10.4)

3.5.1 Optional blocks in the SDF-output file^{*} 3.6 The surface (.psf) file^{*} 3.7 Anonymous SD (.asd) files^{*} 3.7.1 Optional blocks^{*}

Only available in the full version.

3.8 Grid calculations with ParaSurf[™]

3.8.1 User-specified Grid

The command

parasurf <filename> grid=grid.dat

instructs ParaSurf[™] to read a set of Cartesian coordinates from the file grid.dat and to calculate the four local properties (MEP, IEL, EAL, α L). The format of the file grid.dat (which must be in the same directory as the input) is one line per atom containing the x, y and z coordinates in free format, comma-separated, maximum line length 80. For instance, the following grid file:

-3.79480	'	-7.06030	'	10.37150
-3.79480	,	-5.06030	,	-7.62850
-3.79480	,	-5.06030	,	-5.62850
-3.79480	,	-5.06030	,	-3.62850
-3.79480	,	-5.06030	,	0.37150
-3.79480	,	-5.06030	,	2.37150
-3.79480	,	-5.06030	,	4.37150
-3.79480	,	-5.06030	,	6.37150
-3.79480	,	-5.06030	,	8.37150
-3.79480	,	-5.06030	,	10.37150
-3.79480	,	-3.06030	,	-7.62850
-3.79480	,	-3.06030	,	-5.62850
-3.79480	,	-3.06030	,	0.37150
-3.79480	,	-3.06030	,	2.37150

Figure 11 Sample grid file

gives the output shown in Figure 12.

					dv/dz 0.0511	0.3492	-12 2045	0.9171	0.2089	0.3411	0.1257	0.0578	0.4102	5.0984	1.0536		
					dv/dy -0.0048	0.2751	0.4948	-1.1537	-0.7808	-0.3732	0.0126	0.0241	-0.1541	-2.7009	-1.6657		
					-00.007	1.4171	10 4560	4.3010	0.6472	0.0148	-0.0280	-0.0236	1.6383	3.9236	-1.2145		
					Hard(1) 299.22	283.62	268 30	279.76	261.15	289.15	298.89	297.36	255.52	250.21	299.64		
					Eneg(1) 192.84	189.73	175 51	187.08	169.44	192.71	192.22	189.89	163.14	159.17	208.73		
1000					Pol(1) 0.2415	0.2934	0.2953	0. 2955	0.2958	0.2656	0.2413	0.2412	0.2916	0. 2956	0.2634		
versitaet					EA(1) -106.39	-93.89	-94.43	-92.68	-91.71	-96.44	-106.67	-107.47	-92.37	-91.04	-90.91		
(ander - Uni .td.			1251		IE(1) 492.06	473.35	486./0	466.84	430.60	481.86	491.12	487.25	418.66	409.38	508.36		
lrich- <mark>A</mark> lex nsilico L			e grid. dat		MEP 0.30	-2.55	-2./0	2.71	2.03	1.44	0.46	0.29	-2.70	8.27	4.56		
2009,2010 Friec Prg and Cepos 1 .ved.			sing grid fil∈	prim	density 0.1936E-21	0.8572E-10	0.3544E-06	0.1920E-04	0.9497E-08	0.4718E-11	0.4712E-16	0.3452E-19	0.47496-09	0.4907E-03	0.1385E-06	conds CPU time	
Version 2007,2008,2 gen-Nuernbe ghts reser	1.sdf		operties u	or Trimetho	10.37150	-7.62850	-5.62850	0.37150	2.37150	4.37150	8.37150	10.37150	-7.62850	0.37150	2.37150	0.03 sec	
10 Academic (c) 2006,2 Erlang All ri	rimethoprin	otions :	ng local pr tipole elec	culation fo	-7.06030	-5.06030	-5.06030	-5.06030	-5.06030	-5.06030	-5.06030	-5.06030	-3.06030	-3.06030	-3.06030	used	
<pre><> ParaSurf': <> Copyright</pre>	<> Input = ti	<> Program o	calculati Using mult	AM1 cale	-3.79480	-3.79480	-3./9480	-3.79480	-3.79480	-3.79480	-3.79480	-3.79480	-3.79480	-3.79480	-3.79480	<pre> ParaSurf 1 </pre>	

Figure 12 Sample grid output file

The name and the extension (if any) of the grid file are free. Only the output file is written. The units of the local properties are those used in the normal output (i.e. V, IEL, and EAL in kcal mol⁻¹, α L in Ångstrom³.

3.8.2 Automatic grids

ParaSurf[™] can generate grids automatically for lead compounds in ComFA[®]-like procedures. The **grid=auto** option generates a grid around the molecule (with a 4 Å margin around the positions of the atoms in each direction) and includes all points for which the electron density is lower than 10^{-2} (i.e. for points outside the molecule). The spacing of the grid is set to a default value of 1.0 Å, but can be set to any value up to a maximum of 2.0 Å by the command-line argument **lattice=n.n**, which sets the lattice spacing to *n.n* Å. The grid thus generated is output (with the values of the local properties analogously to a calculation that uses an predefined grid and can be used for other molecules that have been aligned with the lead.

- 3.9 The SIM file format
- 3.10 Output tables
- **3.11 Binned SIM descriptor tables**^{*}
- 3.12 Autocorrelation similarity tables^{*}

3.13 Shared files

The Vhamil.par and SIM files are accessed in shared, read-only mode so that multiple ParaSurf[™] jobs can access the same files.

Only available in the full version.

4 TIPS FOR USING PARASURF 10[™]

4.1 Choice of surface

ParaSurf[™] was originally written to use isodensity surfaces. However, calculations that use a solventexcluded surface are very much faster than their equivalents with isodensity surfaces and will usually give comparable results. Surface-integral models may benefit from using a solvent-excluded surface with a solvent radius of 0.5-1.0 Å as this appears to be the most relevant surface for many physical properties. Surfaces fitted to spherical-harmonic expansions require more CPU-time than marchingcube surfaces but are essential for fast numerical applications such as ParaFit[™]. Again, solventexcluded shrink-wrap surfaces are faster to calculate than their isodensity equivalents.

4.2 ParaSurf[™] and ParaFit[™]

ParaFit[™] is Cepos InSilico's very fast shape-matching program that is based on spherical-harmonic expansions generated by ParaSurf[™]. ParaFit[™] can be used to overlay molecules with a common scaffold by defining the centre to be used for generating the spherical-harmonic fit in ParaSurf[™] in the input SDF-file (see 2.2)

4.3 QSAR using grids

As outlined in 3.8.2, ParaSurf^{$^{\text{M}}$} can generate a grid for the lead molecule automatically that can then be used for a set of aligned (e.g. with ParaFit^{$^{\text{M}}$}) molecules for grid-based QSAR. This procedure has proven to be especially effective for test datasets, especially if the molecules are aligned to a common scaffold, as outlined in 4.2.

5 SUPPORT

5.1 Error reporting

Some of the routines in ParaSurf[™] may detect error conditions that have not yet been encountered in our tests. In this case, an error message will be printed requesting that the input and output files be sent to the programming team at the above e-mail address. We realize that this will not always be possible for confidentiality reasons, but if the details can be sent, we will be able to treat the exception and improve the program.

5.2 CEPOS InSilico GmbH

Computer-Chemie-Centrum (CCC) Nägelsbachstr. 25 91052 Erlangen Germany

6 LIST OF TABLES

Table 1:	The descriptors calculated by ParaSurf [™]	15
Table 2:	ParaSurf [™] command-line options	22
Table 3:	ParaSurf [™] input and output files	25
Table 4:	Hamiltonians and the available electrostatic and polarisability models.	26

7 LIST OF FIGURES

Figure 1	Marching-cube (left) and shrink-wrap (right, fitted to a spherical-harmonic approximation) isodensity surfaces calculated with ParaSurf [™] using the default settings	′ 6
Figure 2	2D-representation of a solvent-excluded surface	8
Figure 3	The solvent-accessible surface is obtained by rolling a spherical "solvent molecule"	8
Figure 4	2D-representation of a molecular surface with single-valued (A and B) and multiply valued (C and E radial vectors from the centre)) 8
Figure 5	2D-representation of the shrink-wrap algorithm. The algorithms scans along the vector from point a towards the centre of the molecule until the electron density reaches the preset value (point b). The algorithm results in enclosures (marked yellow) for multi-valued radial vectors	, 9
Figure 6	Spherical-harmonic approximation of a shrink-wrap isodensity surface. Note the areas where the surface does not follow the indentations of the molecule	9
Figure 7	Schematic representation of the planes and hinge area used to determine the centre for spherical-harmonic expansions	11
Figure 8	The headers and titles, atomic coordinates and bond definitions from a VAMP .sdf file. The format follows the MDL definition [25]	26
Figure 9	ParaSurf™ output for trimethoprim, 1, using a spherical-harmonic surface	28
Figure 10	ParaSurf™ output for trimethoprim using a marching-cube surface	35
Figure 11	Sample grid file	41
Figure 12	Sample grid output file	42

8 REFERENCES

- 1 T. Clark, A. Alex, B. Beck, F. Burkhardt, J. Chandrasekhar, P. Gedeck, A. H. C. Horn, M. Hutter, B. Martin, G. Rauhut, W. Sauer, T. Schindler, and T.Steinke, VAMP 8.2, Erlangen 2002; available from Accelrys Inc., San Diego, USA (http://www.accelrys.com/products/datasheets/vamp.pdf).
- 2 J. J. P. Stewart, MOPAC2000, 1999, Fujitsu, Ltd, Tokyo, Japan. MOPAC 6.0 was once available as: J. J. P. Stewart, QCPE # 455, Quantum Chemistry Program Exchange, Bloomsville, Indiana, 1990.
- J. H. Van Drie, "Shrink-wrap" surfaces: A new method for incorporating shape into pharmacophoric 3D database searching, J. Chem. Inf. and Comp. Sci., 1997, 37, 38-41; J. H. Van Drie und R. A. Nugent, Addressing the challenges of combinatorial chemistry: 3D databases, pharmacophore recognition and beyond, SAR and QSAR in Env. Res., 1998, 9, 1-21; J. Erickson, D. J. Neidhart, J. Van Drie, D. J. Kempf, X. C. Wang, D. W. Norbeck, J. J. Plattner, J. W. Rittenhouse, M. Turon, N. Wideburg, et al., Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease, Science, 1990, 249, 527-533.
- 4 W. Heiden, T. Goetze, and J. Brickmann, *Fast generation of molecular surfaces from 3D data fields with an enhanced "marching cube" algorithm. J. Comput. Chem.* **1993**, *14*, 246-50.
- 5 D. W. Ritchie und G. J. L. Kemp, *Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces, J. Comput. Chem.*, **1999**, *20*, 383.
- 6 Chemical Applications of Atomic and Molecular Electrostatic Potentials. Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems, Politzer P; Truhlar DG; (Eds), Plenum Press, New York, NY, **1981**.
- 7 P. Sjoberg, J. S. Murray, T. Brinck and P. A. Politzer, *Average local ionisation energies on the molecular* surfaces of aromatic systems as guides to chemical reactivity, Can. J. Chem. **1990**, 68, 1440-3.
- 8 B. Ehresmann, B. Martin, A. H. C. Horn and T. Clark, *Local molecular properties and their use in predicting reactivity, J. Mol. Model.*, **2003**, *9*, 342-347.
- 9 B. Ehresmann, M. J. de Groot, A. Alex and T. Clark, *New Molecular Descriptors Based on Local Properties at the Molecular Surface and a Boiling-Point Model Derived from Them., J. Chem. Inf. Comp. Sci.*, **2004**, *43*, 658-668.
- 10 B. Ehresmann, M. J. de Groot and T. Clark, *A Surface-Integral Solvation Energy Model : The Local Solvation Energy, J. Chem. Inf. Comp. Sci.*, **2005**, *45*, 1053-1060.
- 11 T. Clark, The Local Electron Affinity for Non-Minimal Basis Sets, J. Mol. Model., 2010, 16, 1231-1238.
- 12 J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173-1213.
- 13 L. M. Loew and W. R. MacArthur, A molecular orbital study of monomeric metaphosphate. Density surfaces of frontier orbitals as a tool in assessing reactivity, J. Am. Chem. Soc., **1977**, 99,1019-25.
- 14 B. S. Duncan and A. J. Olson, *Approximation and Characterization of Molecular Surfaces*; Scripps Insitute, San Diego, California, **1995**.
- 15 J.-H. Lin and T. Clark, *An analytical, variable resolution, complete description of static molecules and their intermolecular binding properties, J. Chem. Inf. Model.*, **2005**, *45*, 1010-1016.
- 16 G. Rauhut and T. Clark, *Multicenter Point Charge Model for High Quality Molecular Electrostatic Potentials from AM1 Calculations, J. Comput. Chem.*, **1993**, *14*, 503 509.
- 17 B. Beck, G. Rauhut and T. Clark, *The Natural Atomic Orbital Point Charge Model for PM3: Multipole Moments and Molecular Electrostatic Potentials, J. Comput. Chem.*, **1994**, *15*, 1064 1073.

- 18 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899 4907; 4907- 4917; MNDO, W. Thiel, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III and P. R. Schreiner (Eds), Wiley, Chichester, 1998, 3, 1599.
- M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, J. Am. Chem. Soc. 1985, 107, 3902-3909;
 A. J. Holder, AM1, Encyclopedia of Computational Chemistry, Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer, H. F., III; Schreiner, P. R. (Eds), Wiley, Chichester, 1998, 1, 8-11.
- 20 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 220; 221 264; PM3, J. J. P. Stewart, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer,III and P. R. Schreiner (Eds), Wiley, Chichester, 1998, 3, 2080.
- W. Thiel and A. A. Voityuk, Extension of the MNDO formalism to d orbitals: integral approximations and preliminary numerical results, Theoret. Chim. Acta, 1992, 81, 391 404;
 W. Thiel and A. A. Voityuk, Extension of MNDO to d orbitals: parameters and results for the halogens, 1996, 93, 315 315;
 W. Thiel and A.A. Voityuk, Extension of MNDO to d orbitals: parameters and results for silicon, J. Mol. Struct., 1994, 313, 141 154;
 W. Thiel and A. A. Voityuk, Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group, J. Phys. Chem., 1996, 100, 616 626;
 MNDO/d, W. Thiel, Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer,III and P. R. Schreiner (Eds), Wiley, Chichester, 1998, 3, 1604.
- 22 P. Winget, C. Selçuki, A. H. C. Horn, B. Martin and T. Clark, *AM1* Parameters for Phosphorous, Sulfur and Chlorine, J. Mol. Model.* **2003**, *9*, 408-414.
- 23 A. H. C. Horn, J.-H. Lin and T. Clark, A Multipole Electrostatic Model for NDDO-based Semiempirical Molecular Orbital Methods, Theor. Chem. Accts, 2005, 113, 159-168.
- 24 G. Schürer, P. Gedeck, M. Gottschalk and T. Clark, Accurate Parametrized Variational Calculations of the Molecular Electronic Polarizability by NDDO-Based Methods, Int. J. Quant. Chem., **1999**, 75, 17.
- D. Rinaldi and J.-L. Rivail, Calculation of molecular electronic polarizabilities. Comparison of different methods, *Theor. Chim. Acta* 1974, 32, 243-251; J.-L. Rivail and D. Rinaldi, *Variational calculation of multipole electric polarizabilities*, Comptes Rendus, Serie B: Sciences Physiques 1976, 283, D. Rinaldi and J.-L. Rivail, *Molecular polarizabilities and dielectric effect of the medium in the liquid state. Theoretical study of the water molecule and its dimers*, *Theor. Chim. Acta* 1973, 32, 57.
- 26 B. Martin, P. Gedeck and T. Clark, *An Additive NDDO-Based Atomic Polarizability Model. Int. J. Quant. Chem.*, **2000**, *77*, 473-497.
- 27 R. J. Abraham, B. D. Hudson, M. W. Kermode and J. R. Mines, *J. Chem. Soc., Faraday Trans. I*, **1988**, 84, 1911-1917.
- 28 Tomasi, B. Mennucci and R. Cammi, *Quantum Mechanical Continuum Solvation Models, Chem. Rev.*, **2005**, 105, 2999.
- 29 C. J. Cramer, G. R. Famini and A. H. Lowrey, *Acc. Chem. Res.*, **1993**, *26*, 599 605.
- 30 A. Y. Meyer, The Size of Molecules, Chem. Soc. Rev., **1986**, 15, 449-475.
- 31 J. S. Murray and P. Politzer. Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases, J. Mol. Struct. (Theochem), **1998**, 425, 107-114;

J. S. Murray, S. Ranganathan and P. Politzer, *Correlations between the solvent hydrogen bond acceptor* parameter β and the calculated molecular electrostatic potential, J. Org. Chem., **1991**, 56, 3734-3747;

P. Politzer, P. Lane, J. S. Murray and T. Brinck, *Investigation of relationships between solute molecule surface electrostatic potentials and solubilities in supercritical fluids, J. Phys. Chem.*, **1992**, *96*, 7938-7643;

J. S. Murray, P. Lane, T. Brinck, K. Paulsen, M. E. Grice and P. Politzer, *Relationships of critical constants and boiling points to computed molecular surface properties, J. Phys. Chem.*, **1993**, 97, 9369-9373.;

T. Brinck, J. S. Murray and P. Politzer, *Quantitative determination of the total local polarity (charge separation) in molecules, Mol. Phys.*, **1992**, *76*, 609.

32 L. Mavridis, B. D. Hudson and D. W. Ritchie, *Toward high throughput virtual screening using spherical harmonic surface representations*, *J. Chem. Inf. Model.*, **2007**, *47*, 1787-1796.

33 http://www.mdl.com/solutions/white_papers/ctfile_formats.jsp

34 W. Thiel, *The MNDOC method, a correlated version of the MNDO model, J. Am. Chem. Soc.,* **1981**, 103, 1413-1420.