

JSER MANUAL

Impressum

TABLE OF CONTENTS

PROGRAM HISTORY

E
-

1 INTRODUCTION	6
1.1 Changes relative to ParaSurf19 [™]	7
1.1.1 EMPIRE [™]	7
1.2 Isodensity surfaces	7
1.3 Solvent-excluded surfaces	8
1.4 Solvent-accessible surfaces	8
1.5 Shrink-wrap surface algorithm	9
1.6 Marching-cube algorithm	10
1.7 Spherical-harmonic fitting	11
1.8 Local properties	13
1.8.1 Molecular electrostatic potential	13
1.8.1.1 The natural atomic orbital/PC (NAO-PC) model	13
1.8.1.2 The multipole model	13
1.8.2 Local ionization energy, electron affinity, hardness and electronega	tivity 13
1.8.3 Local polarizability	15
1.8.4 Field normal to the surface	15
1.9 Descriptors	16
1.10 Surface-integral models (polynomial version)	22
1.11 Binned surface-integral models	23
1.12 Spherical harmonic "hybrids"	24
1.13 Descriptors and moments based on polynomial surface-integral models	25
1.14 Shannon entropy	26
1.15 Surface autocorrelations	28
1.16 Standard rotationally invariant fingerprints (RIFs)	30
1.17 Maxima and minima of the local properties	30
1.18 Atom-centred descriptors	30
1.19 Fragment analysis	30

2 PROGRAM OPTIONS312.1 Command-line options312.2 Options defined in the input SDF-file362.2.1 Defining the centre for spherical-harmonic fits362.2.2 Defining fragments37

3 INPUT AND OUTPUT FILES	41
3.1 EMPIRE [™] HDF5 (*e.h5) output files	42
3.2 The EMPIRE [™] or VAMP .sdf files as input	42
3.2.1 Multi-structure SD-files	45
3.3 The Cepos MOPAC 6.sdf file as input	45
3.4 The <hamiltonian>.par file</hamiltonian>	45
3.5 The EMPIRE [™] binary wavefunction file (.vwf)	46
3.6 The ParaSurf [™] output file	47
3.6.1 For a spherical-harmonic surface	47

3.6.2 For a marching-cube surface	55
3.6.3 For a job with Shannon entropy	61
3.6.4 For a job with autocorrelation similarity	62
3.7 ParaSurf [™] SDF-output	63
3.7.1 Optional blocks in the SDF-output file	66
3.8 The surface (.psf) file	69 70
3.9.1 Optional blocks	70
3.10 Grid calculations with ParaSurf™	72
3.10.1 User-specified Grid	72
3.10.2 Automatic grids	73
3.11 The SIM file format	74
3.12 Output tables	76
3.13 Binned SIM descriptor tables	80
3.14 Autocorrelation fingerprint and similarity tables	81
3.15 Shared files	81
TIPS FOR USING PARASURF20 [™]	82
4.1 Choice of surface	82
4.2 Local properties	82
4.3 QSAR using grids	82

5 SUPPORT	83
5.1 Contact	83
5.2 Error reporting	83
5.3 CEPOS InSilico GmbH	83

6 LIST OF TABLES

4

7 LIST OF FIGURES

8 REFERENCES

84

85

PROGRAM HISTORY

Release Date	Version	Platforms
1 st July 2005	ParaSurf ′05 [™] initial release(Revision A1)	32-bit Windows
1 st January 2006	ParaSurf´05 [™] Revision B1 (customer-feedback release)	Irix
1 st July 2006	ParaSurf´06™ Revision A1	32-bit Windows 32-bit Linux
1 st July 2007	ParaSurf´07™ Revision A1	64-bit Linux Irix
1 st July 2008	ParaSurf´08 [™] Revision A1	
22 nd August 2008	ParaSurf´08 [™] Revision A2 (minor bug fix release)	
16 th December 2008	ParaSurf´08 [™] Revision A3 (minor bug fix release)	
1 st July 2009	ParaSurf´09™ Revision A1	22 bit Windows
1st September 2009New Vhamil.par file including PM6 and first-row transition metals in AM1*		64-bit Windows 32-bit Linux
1 st February 2010	ParaSurf ´09 [™] Revision B1 (additional atom-centred descriptors)	64-bit Linux
1 st July 2010	ParaSurf´10™ Revision A1	
1 st July 2011	ParaSurf´11™ Revision A1	
1 st September 2013	ParaSurf´12™ Revision A1	
1 st November 2019	ParaSurf19™ Revision A1	64-bit Windows 64-bit Linux
1st March 2020	ParaSurf19™ Revision A2 (Vhamil.par replaced by EMPIRE <hamiltonian>.par file)</hamiltonian>	64-bit Windows 64-bit Linux
1 st September 2020	ParaSurf20™ Revision A1	64-bit Windows 64-bit Linux

1 INTRODUCTION

ParaSurf[™] is a program to generate isodensity or solvent-excluded surfaces from the results of semiempirical molecular orbital calculations, either from VAMP [1] or a public-domain version of MOPAC modified and made available by Cepos InSilico.[2] The surface may be generated by shrink-wrap [3] or marching-cube [4] algorithms and the former may be fit to a spherical harmonic series.[5] The principles of these two techniques are explained below, but for comparison **Figure 1** shows default isodensity surfaces calculated by ParaSurf[™] for a tetracycline derivative. The surfaces are color-coded according to the electrostatic potential at the surface.

Figure 1 Marching-cube (left) and shrink-wrap (right, fitted to a spherical-harmonic approximation) isodensity surfaces calculated with ParaSurf[™] using the default settings

Four local properties, the molecular electrostatic potential (MEP),[6] the local ionization energy (IE_L), [7] the local electron affinity (EA_L), [8] and the local polarizability (α_L) [8] are calculated at the points on the surface. Two further properties, the local hardness (η_L), [8] and the local electronegativity (χ_L) [8] can be derived from IE_L and EA_L.

The local properties can be used to generate a standard set of 81 descriptors [9] appropriate for quantitative structure-property relationships (QSPRs) for determining physical properties.

ParaSurf[™] can also generate local enthalpies and free energies of solvation [10] and integrate them over the entire molecular surface to give the enthalpy or free energy of solvation. ParaSurf[™] can read so-called Surface-Integral Model (SIM) files that allow it to calculate properties such as, for instance, the enthalpy and free energy of hydration and the free energies of solvation in n-octanol and chloroform. The surface-integral models are expressed as summations of local solvation energies over the molecular surface. These local solvation energies can be written to the ParaSurf[™] surface file.

ParaSurf[™] is the first program to emerge from the ParaShift collaboration between researchers at the Universities of Erlangen, Portsmouth, Southampton, Oxford and Aberdeen. It is intended to provide the molecular surfaces for small molecules (i.e. non-proteins) for subsequent quantitative structure-activity relationship (QSAR), QSPR, high-throughput virtual screening (HTVS), docking and scoring, pattern-recognition and simulation software that will be developed in the ParaShift project.

1.1 Changes relative to ParaSurf19[™]

The functionality of ParaSurf20[™] has been extended to allow EMPIRE[™] *_e.h5 binary HDF5 files to be used as input. The naming of files for the input has also been made more flexible. In detail, the changes relative to ParaSurf'19[™] are:

- ParaSurf20[™] now uses EMPIRE[™] *_e.h5 file as the primary input format. The hierarchy of the input file formats is defined below.
- ParaSurf20[™] now accepts the full name of input files (e.g. molecule_e.h5, molecule_e.vwf or molecule .sdf to enable the automatic hierarchy to be avoided.
- ParaSurf20[™] accepts lists of files as input (see option **inlist=<s>**).

1.1.1 EMPIRE[™]

ParaSurf20[™] is compatible with CeposInSilico's EMPIRE20[™] program for performing semiempirical molecular orbital calculations and communicates with EMPIRE using the .h5 or .sdf file formats.

1.2 Isodensity surfaces

Isodensity surfaces [11] are defined as the surfaces around a molecule at which the electron density has a constant value. Usually this value is chosen to approximate the van der Waals' shape of the molecule. ParaSurf[™] allows values of the isodensity level down to 0.00001 e^{-Å-3}. Lower values than this may result in failures of the surface algorithms for very diffuse surfaces.

1.3 Solvent-excluded surfaces

The solvent-excluded surface is obtained by rolling a spherical solvent molecule of radius r_{solv} over the surface of the molecule as shown in **Figure 2**. The surface of the solvent molecule defines the molecular surface, so that the yellow volume in **Figure 2** becomes part of the molecule.

1.4 Solvent-accessible surfaces

Solvent-accessible surfaces are obtained in the same way as solvent-excluded surfaces but the <u>outer</u> surface of the solvent sphere is used to define the molecular surface, as shown in **Figure 3**.

1.5 Shrink-wrap surface algorithm

Shrink-wrap surface algorithms [3] are used to determine single-valued molecular surfaces. Single-valued in this case means that for any given radial vector from the centre of the molecule the surface is only crossed once (vectors **A** and **B** in **Figure 4**) and not multiply (vectors **C** and **D** in **Figure 4**):

Single-valued surfaces are necessary for spherical-harmonic fitting (see Section 1.4). Thus, spherical-harmonic fitting is only available for shrink-wrap surfaces in ParaSurf[™]. The shrink-wrap algorithm works by starting outside the molecule (point **a** in **Figure 5**) and moving inwards along the radial vector until it finds the surface (in our case defined by the predefined level of the electron density, point **b** in **Figure 5**). Thus, the shrink-wrapped surface may contain areas (marked by dashed lines in **Figure 5**) for which the surface deviates from the true isodensity surface.

These areas of the surface, however, often have little consequence as they are situated above indentations in the molecule that are poorly accessible to solvents or other molecules. The shrink-wrapped surfaces generated by ParaSurf[™] should normally be fitted to a spherical-harmonic series for use in HTVS, similarity, pattern-recognition or high-throughput docking applications. The default molecular centre in ParaSurf[™] is the centre of gravity (CoG). In special cases in which the CoG lies outside the molecule, another centre may be chosen.

Figure 6 shows a spherical-harmonically fitted shrink-wrap surface for a difficult molecule. The areas shown schematically in **Figure 5** are clearly visible.

Figure 6 Spherical-harmonic approximation of a shrink-wrap isodensitiy surface. Note the areas where the surface does not follow the indentations of the molecule.

1.6 Marching-cube algorithm

The marching-cube algorithm [4] implemented in ParaSurf[™] does not have the disadvantage of being single-valued like the shrink-wrap surface. It cannot, therefore, be fitted to a spherical harmonic series and is used as a purely numerical surface primarily for QSPR applications or surface-integral models. [10] The algorithm works by testing the electron density at the corners of cubes on a cubic lattice laid out through the molecular volume. The corners are divided into those "inside" the molecule (i.e. with a higher electron density than the preset value) and those "outside". The surface triangulation is then generated for each surface cube and the positions of the surface points corrected to the preset electron density.

1.7 Spherical-harmonic fitting

Complex surfaces can be fitted to spherical harmonic series to give analytical approximations of the surface.[5] The surfaces are fit to a series of distances $r_{\alpha,\beta}$ from the centre along the radial vector defined by the angles α and β as:

$$r_{\alpha,\beta} = \sum_{l=0}^{N} \sum_{m=-l}^{l} c_l^m Y_l^m \tag{1}$$

Where the distances $r_{\alpha,\beta}$ are linear combinations of spherical harmonics Y_{I}^{m} defined as:

$$Y_{l}^{m}(\alpha,\beta) = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_{l}^{m}(\cos\alpha)e^{im\beta}$$
(2)

where P_l^m (cos α) are associated Legendre functions and l and m are integers such that -l <=m <=l. In the above form, spherical harmonics are complex functions. Duncan and Olson [12] have used the real functions

$$Y_l^m(\alpha,\beta) = N_{lm} P_l^m(\cos\alpha) \cos|m|\beta$$
(3)

where N_{lm} are normalization factors, to describe molecular surfaces using spherical harmonics.

ParaSurf[™] not only fits the surface itself (i.e. the radial distances) to spherical harmonic expansions, but also the four local properties (see Section **1.8**). In this way, a completely analytical description of the shape of the molecule and its intermolecular binding properties is obtained.[**13**] This description can be truncated at different orders l depending on the application and the precision needed. Thus, a simple description of the molecular properties (shape, MEP, IE_L, EA_L and α_L) to order 2 consists of only five sets of nine coefficients each, or 45 coefficients. These coefficients can be rotated, overlaps calculated etc. [**5**] to give fast scanning of large numbers of compounds.

Note that, because of the approximate nature of the spherical-harmonic fits, the default isodensity level for the shrink-wrapped surface (0.0005 $e^{-}A^{-3}$) is lower than that (0.007 $e^{-}A^{-3}$) appropriate for an approximately van der Waals' surface using the marching-cube algorithm. The lower value avoids the surface coming too close to atoms. Note also that the fits are incremental, which means that the order chosen for a given application can be obtained by ignoring coefficients of higher order in the spherical-harmonic series.

In some cases, the default resolution of the molecular surface does not allow fitting the sphericalharmonic expansion to very high orders without introducing noise ("ripples") on the fitted surface. In this case, the calculated RMSD becomes larger at higher orders of the spherical-harmonic expansion. ParaSurf19[™] recognizes this condition and truncates the fitting procedure at the optimum value. This can be recognized in the output because the RMSD for later cycles remains constant and the coefficients of the higher order spherical harmonics are all zero. This guarantees the optimum fit in each case and is important for applications that use either the spherical-harmonic coefficients themselves or the hybridization coefficients.

The choice of centre for fitting to a spherical-harmonic expansion is critical. ParaSurf19[™] therefore goes through a multi-step procedure in order to find a suitable centre. This procedure is retained for all molecules for which the ParaSurf'08[™] found a suitable centre. However, if the algorithms implemented in ParaSurf'08[™] fail to find a suitable centre, the additional technique first implemented in ParaSurf'12[™] will probably work.

The problem with many molecules is that, for instance, the centre of mass does not lie within the molecular volume. This can easily be the case for, for instance, U- or L-shaped molecules. The procedure implemented in ParaSurf19[™] works as follows:

- 1. The program first calculates the centre of mass and tests whether it lies within the volume of the molecule. If it does, it is used as the molecular centre. If not, the program moves on to the next step.
- 2. ParaSurf[™] calculates the principal moments of inertia of the molecule and derives a centre from them by assuming that the molecule is U- or V-shaped. The procedure tries to place the centre at the base centre of the molecule. This procedure was implemented in ParaSurf'08[™] as a fallback if the centre of mass proved unsuitable. If it also fails to find a suitable centre, ParaSurf19[™] moves on to a third option, which finds a centre for all but the most difficult molecules.
- 3. The new procedure first searches for the largest plane in the molecule (i.e. the one that contains the most atoms). This search has some leeway, so that the atoms must not all lie exactly in the plane. As a second step, the second largest plane is sought. The molecular centre is then placed in the hinge area between the two planes, as illustrated in **Figure 7**:

Figure 7 Schematic representation of the planes and hinge area used to determine the centre for spherical-harmonic expansions.

INTRODUCTION

13

1.8 Local properties

The local properties calculated by ParaSurf[™] are those related to intermolecular interactions. Local properties, sometimes inaccurately called fields in QSAR work, are properties that vary in space around the molecule and therefore have a distribution of values at the molecular surface. The best known and most important local property in this context is the molecular electrostatic potential, which governs Coulomb interactions, but the MEP only describes a part of the intermolecular interaction energy, so that further local properties are needed.

1.8.1 Molecular electrostatic potential

The MEP is defined in ParaSurf^{\mathbb{M}} as the energy of interaction of a single positive electronic charge at the position **r** with the molecule. Within quantum mechanical (semiempirical or ab initio molecular orbital (MO) theory, density functional theory (DFT)) the MEP (V(**r**)) is described [**6**] as:

$$MEP(\mathbf{r}) = \sum_{i=1}^{n} \frac{Z_i}{|\mathbf{R}_i - \mathbf{r}|} - \int \frac{\rho(\mathbf{r}')d\mathbf{r}'}{|\mathbf{r}' - \mathbf{r}|}$$
(4)

where *n* is the number of atoms in the molecule, Z_i is the nuclear charge of atom i located at \mathbf{R}_i and $\rho(\mathbf{r})$ is the electron-density function of the molecule. This expression, however, involves integrating the electron density, a time-consuming calculation. ParaSurf[™] therefore uses two different approximate models for calculating the MEP.

1.8.1.1 The natural atomic orbital/PC (NAO-PC) model

The NAO-PC model [14] uses a total of nine point charges, one positive charge at the nucleus and eight negative ones distributed around it, to describe the electrostatics of a non-hydrogen atom with a valence-only s- and p-basis set for the semiempirical Hamiltonians MNDO,[15] AM1 [16] and PM3.[17] The negative charges are located at the charge centres of each lobe of the natural atomic orbitals, which are obtained by diagonalizing the one-atom blocks of the density matrix.[18] The NAO-PC charges are calculated by VAMP and output in the .sdf file for use in ParaSurf[™]. The NAO-PC model is therefore only available when using ParaSurf[™] with VAMP .sdf input. NAO-PC charges are also not available for semiempirical Hamiltonians such as MNDO/d[19] or AM1*[18] that use d-orbitals in the basis set.

1.8.1.2 The multipole model

The integrals needed to evaluate **Equation (4)** in MNDO-type methods use a multipole approximation [20] that extends to quadrupoles. We can therefore also use this approximation to calculate atom-centred monopoles, dipoles and quadrupoles for each atom in the molecule.[21] This multipole model is applicable to all methods, including those with d-orbitals, and can be used with MOPAC output files as input to ParaSurf[™].

1.8.2 Local ionization energy, electron affinity, hardness and electronegativity

The local ionization energy $IE_L(\mathbf{r})$ is defined [7] as a density-weighted Koopmans' ionization potential at a point \mathbf{r} near the molecule:

$$IE_{L}(\mathbf{r}) = \frac{-\sum_{i=1}^{HOMO} \rho_{i}(\mathbf{r})\varepsilon_{i}}{\sum_{i=1}^{HOMO} \rho_{i}(\mathbf{r})}$$
(5)

where HOMO is the number of the highest occupied MO, $\rho_i(\mathbf{r})$ is the electron density at point \mathbf{r} due to MO i and ε_i is its Eigenvalue. The local ionization energy describes the tendency of the molecule to interact with electron acceptors (Lewis acids) in a given region in space.[7-8]

The definition of the local electron affinity is a simple extension of **Equation (5)** to the virtual MOs:[8]

$$EA_{L}(\mathbf{r}) = \frac{-\sum_{i=LUMO}^{norbs} \rho_{i}(\mathbf{r})\varepsilon_{i}}{\sum_{i=LUMO}^{norbs} \rho_{i}(\mathbf{r})}$$
(6)

The local electron affinity is the equivalent of the local ionization energy for interactions with electron donors (Lewis bases).[8] An intensity-filtering technique [20b] was introduced in ParaSurf'10[™] to allow the local electron affinity to be calculated for Hamiltonians such as AM1* and MNDO/d that use polarisation d-functions.

Equation (6) requires that the occupied and virtual orbitals be approximately equivalent to each other. This is not the case for semiempirical Hamiltonians (such as AM1*) that include d-orbitals as polarisation functions or for extensive basis sets in Hartree-Fock ab initio or in Density-Functional theory (DFT) calculations. A new technique has therefore been defined [11] to exclude pure polarisation functions from the summation in Equation (6). This technique is now default in ParaSurf19[™] and gives reliable results. For continuity, a new command-line option (EAL09) has been introduced to request that the calculation of the local electron affinity be performed exactly as in ParaSurf'09[™] and earlier versions.

Two further, less fundamental local properties have been defined.[8] These are the local hardness, η_L :

$$\eta_L = \frac{\left(IE_L - EA_L\right)}{2} \tag{7}$$

and the local electronegativity, χ_L :

$$\chi_L = \frac{\left(IE_L + EA_L\right)}{2} \tag{8}$$

1.8.3 Local polarizability

Within the NDDO, the molecular electronic polarizability is easily accessible using the parameterized version [22] of the variational technique introduced by Rivail,[23] which can also be partitioned into an additive polarizability scheme.[20a] Versions of ParaSurf[™] up to ParaSurf¹¹ used an isotropic definition of the the local polarizability, α_L , at a point near the molecule:

$$\alpha_{L}(\mathbf{r}) = \frac{\sum_{j=1}^{norbs} \rho_{j}^{1}(\mathbf{r})q_{j}\overline{\alpha}_{j}}{\sum_{j=1}^{norbs} \rho_{j}^{1}(\mathbf{r})q_{j}}$$
(9)

where q_j is the Coulson occupation and $\overline{\alpha}_j$ the isotropic polarizability attributed to atomic orbital j. The density ρ_j^1 is defined as the electron density at the point in question due to an exactly singly occupied atomic orbital j. The sum is now over atomic orbitals, rather than MOs as for the other local properties. Thus, the local polarizability is a simple occupation-weighted sum of the orbital polarizabilities in which the contribution of each AO is determined by the density of the individual AO at the point being considered.

ParaSurf19 makes use of the fact that the atomic polarizability tensors produced by the procedure described in reference [**20a**] are anisotropic. It uses this atomic anisotropy to calculate a more highly resolved local polarizability that is now standard in ParaSurf19. The keyword "parasurf11" ensures backwards compatibility with the isotropic local polarizability used in earlier versions.

1.8.4 Field normal to the surface

The electrostatic field (the first derivative of the potential) normal to the molecular surface is closely related to the electrostatic solvation energy in implicit solvation models.[24] This field also has the advantage that it is largely independent of the total molecular charge, so that charged molecules can be compared with neutral ones. If the molecular electrostatic potential is used for this purpose, the charge of ions leads a shift in the potential descriptors, so that molecules and ions with different charges cannot be compared directly. The direction of the normal field (inwards or outwards) also defines, for instance hydrogen-bond donors and acceptors specifically.

1.9 Descriptors

A set of 81 molecular descriptors derived from the MEP, local ionization energy, IE_L, electron affinity, EA_L, electronegativity, χ_L , hardness, η_L , and polarizability, α_L has been defined for QSPR-studies.[9] These and several related descriptors calculated and output by ParaSurf[™] are defined in the following table.

Descriptor	Description	Formula/ Reference	Symbol in CSV file
μ	Dipole moment		dipole
μο	Dipolar density	[20 a]	dipden
α	Molecular electronic polarisabilty	[25]	polarizability
MW	Molecular weight		MWt
G	Globularity	[26]	globularity
А	Molecular surface area		totalarea
VOL	Molecular volume		volume
V _{max}	Maximum (most positive) MEP	[27]	MEPmax
V _{min}	Minimum (most negative) MEP	[27]	MEPmin
$\overline{V_{_+}}$	Mean of the positive MEP values	[27]	meanMEP+
\overline{V}_{-}	Mean of the negative MEP values	[27]	meanMEP-
\overline{V}	Mean of all MEP values	[27]	meanMEP
ΔV	MEP-range	[27]	MEP-range
$\sigma_{\scriptscriptstyle +}^2$	Total variance in the positive MEP values	[27]	MEPvar+
$\sigma_{\scriptscriptstyle -}^2$	Total variance in the negative MEP values	[27]	MEPvar-
$\sigma_{\scriptscriptstyle tot}^2$	Total variance in the MEP	[27]	MEPvartot
ν	MEP balance parameter	[27]	MEPbalance
$\sigma_{tot}^2 v$	Product of the total variance in the MEP and the balance parameter	[27]	var*balance
γ_1^V	Skewness of the MEP- distribution	$\gamma_1^{\alpha_L} = \frac{\sum_{i=1}^{N} \left(\alpha_L^i - \overline{\alpha}_L\right)^3}{(N-1)\sigma^3}$	MEPskew

Table 1 The descriptors calculated by ParaSurf™

Descriptor	Description	Formula/ Reference	Symbol in CSV file
γ_2^V	Kurtosis of the MEP- distribution	$\gamma_{2}^{V} = \frac{\sum_{i=1}^{N} (V_{i} - \overline{V})^{4}}{(N-1)\sigma^{4}} - 3$	MEPkurt
\int_{V}	Integrated MEP over the surface	$\int_{V} = \sum_{i=1}^{N} V_{i} a_{i}$	MEPint
IE_L^{\max}	Maximum value of the local		IELmax
IE_L^{\min}	Minimum value of the local ionization energy		IELmin
$\overline{IE_L}$	Mean value of the local ionization energy	$\overline{IE_L} = \frac{1}{N} \sum_{i=1}^N IE_L^i$	IELbar
ΔIE_L	Range of the local ionization energy	$\Delta IE_L = IE_L^{\rm max} - IE_L^{\rm min}$	IELrange
$\sigma^2_{\scriptscriptstyle I\!E}$	Variance in the local ionization energy	$\sigma_{\rm \tiny IE}^2 = \frac{1}{N} \sum_{i=1}^{N} \left[I E_L^i - \overline{I E_L} \right]^2$	IELvar
${\cal Y}_1^{IE_L}$	Skewness of the local ionization energy distribution	$\gamma_1^{IE_L} = \frac{\sum_{i=1}^{N} \left(IE_L^i - \overline{IE}_L \right)^3}{(N-1)\sigma^3}$	IELskew
$\gamma_2^{IE_L}$	Kurtosis of the local ionization energy distribution	$\gamma_{2}^{IE_{L}} = \frac{\sum_{i=1}^{N} \left(IE_{L}^{i} - \overline{IE}_{L} \right)^{4}}{(N-1)\sigma^{4}} - 3$	IELkurt
\int_{IE_L}	Integrated local ionization energy over the surface	$\int_{IE_L} = \sum_{i=1}^N IE_L^i a_i$	IELint
EA_L^{\max}	Maximum of the local electron affinity		EALmax
EA_L^{\min}	Minimum of the local electron affinity		EALmin
$\overline{EA_{L+}}$	Mean of the positive values of the local electron affinity	$\overline{EA_{L+}} = \frac{1}{N^{+}} \sum_{i=1}^{N^{+}} EA_{L+}^{i}$	EALbar+
$\overline{EA_{L-}}$	Mean of the negative values of the local electron affinity	$\overline{EA_{L-}} = \frac{1}{N^{-}} \sum_{i=1}^{N^{-}} EA_{L-}^{i}$	EALbar-
$\overline{EA_L}$	Mean value of the local electron affinity	$\overline{EA_L} = \frac{1}{N} \sum_{i=1}^{N} EA_L^i$	EALbar
ΔEA_L	Range of the local electron affinity	$\Delta EA_L = EA_L^{\max} - EA_L^{\min}$	EALrange

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\sigma^2_{\scriptscriptstyle E\!A\! op}$	Variance in the local electron affinity for all positive values	$\sigma_{EA+}^{2} = \frac{1}{m} \sum_{i=1}^{m} \left[EA_{i}^{+} - \overline{EA^{+}} \right]^{2}$	EALvar+
$\sigma^2_{\scriptscriptstyle E\!A\!-}$	Variance in the local electron affinity for all negative values	$\sigma_{EA-}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[EA_{i}^{-} - \overline{EA^{-}} \right]^{2}$	EALvar-
$\sigma^2_{\scriptscriptstyle EAtot}$	Sum of the positive and negative variances in the local electron affinity	$\sigma_{EAtot}^2 = \sigma_{EA+}^2 + \sigma_{EA-}^2$	EALvartot
V _{EA}	Local electron affinity balance parameter	$v_{EA} = \frac{\sigma_{EA+}^2 \cdot \sigma_{EA-}^2}{\left[\sigma_{EA}^2\right]^2}$	EALbalance
$\delta\!\mathrm{A}_{\scriptscriptstyle E\!A}^{\scriptscriptstyle +}$	Fraction of the surface area with positive local electron affinity	$\delta A_{E\!A}^{+} = rac{A_{E\!A}^{+}}{A}$, A = total surface area	EALfraction+
$\mathbf{A}_{E\!A}^+$	Surface area with positive local electron affinity		EALarea+
${\cal Y}_1^{\it EA_L}$	Skewness of the local electron affinity distribution	$\gamma_1^{EA_L} = \frac{\sum_{i=1}^{N} \left(EA_L^i - \overline{E}\overline{A}_L \right)^3}{(N-1)\sigma^3}$	EALskew
$\gamma_2^{EA_L}$	Kurtosis of the local electron affinity distribution	$\gamma_2^{EA_L} = \frac{\sum_{i=1}^{N} \left(EA_L^i - \overline{E}\overline{A}_L \right)^4}{(N-1)\sigma^4} - 3$	EALkurt
\int_{EA_L}	Integrated local electron affinity over the surface	$\int_{IE_L} = \sum_{i=1}^N E A_L^i a_i$	EALint
α_L^{\max}	Maximum value of the local polarizability		POLmax
$lpha_{\scriptscriptstyle L}^{\scriptscriptstyle { m min}}$	Minimum value of the local polarizability		POLmin
$\overline{\alpha_{\scriptscriptstyle L}}$	Mean value of the local polarizability	$\overline{\alpha_L} = \frac{1}{N} \sum_{i=1}^N \alpha_L^i$	POLbar
$\Delta \alpha_{_L}$	Range of the local polarizability	$\Delta \alpha_L = \alpha_L^{\max} - \alpha_L^{\min}$	POLrange
σ_{lpha}^{2}	Variance in the local polarizability	$\sigma_{\alpha}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\alpha_{L}^{i} - \overline{\alpha_{L}} \right]^{2}$	POLvar
$\gamma_1^{lpha_L}$	Skewness of the local polarizability distribution	$\gamma_1^{\alpha_L} = \frac{\sum_{i=1}^{N} \left(\overline{\alpha_L^i - \overline{\alpha}_L} \right)^3}{(N-1)\sigma^3}$	POLskew

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\gamma_2^{\alpha_L}$	Kurtosis of the local polarizability distribution	$\gamma_2^{\alpha_L} = \frac{\sum_{i=1}^N \left(\alpha_L^i - \overline{\alpha}_L\right)^4}{(N-1)\sigma^4} - 3$	POLkurt
\int_{α_L}	Integrated local polarizability over the surface	$\int_{lpha_L} = \sum_{i=1}^N lpha_L^i a_i$	POLint
$\chi_L^{ ext{max}}$	Maximum value of the local electronegativity		ENEGmax
${\chi}_L^{ m min}$	Minimum value of the local electronegativity		ENEGmin
$\overline{\chi_{\scriptscriptstyle L}}$	Mean value of the local electronegativity	$\overline{\chi_L} = rac{1}{N}\sum_{i=1}^N \chi_L^i$	ENEGbar
$\Delta \chi_L$	Range of the local electron electronegativity	$\Delta \chi_L = \chi_L^{\rm max} - \chi_L^{\rm min}$	ENEGrange
σ_{χ}^{2}	Variance in the local electronegativity	$\sigma_{\chi}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\chi_{L}^{i} - \overline{\chi_{L}} \right]^{2}$	ENEGvar
$\gamma_1^{\chi_L}$	Skewness of the local electronegativity distribution	$\gamma_1^{\chi_L} = \frac{\sum_{i=1}^N \left(\chi_L^i - \overline{\chi}_L\right)^3}{(N-1)\sigma^3}$	ENEGskew
$\gamma_2^{\chi_L}$	Kurtosis of the local electronegativity distribution	$\gamma_{2}^{\chi_{L}} = \frac{\sum_{i=1}^{N} \left(\chi_{L}^{i} - \overline{\chi}_{L}\right)^{4}}{(N-1)\sigma^{4}} - 3$	ENEGkurt
\int_{χ_L}	Integrated local electronegativity over the surface	$\int_{\chi_L} = \sum_{i=1}^N \chi_L^i a_i$	ENEGint
$\eta_{\scriptscriptstyle L}^{\scriptscriptstyle m max}$	Maximum value of the local hardness		HARDmax
$\eta_{\scriptscriptstyle L}^{\scriptscriptstyle{ m min}}$	Minimum value of the local hardness		HARDmin
$\overline{\eta_{\scriptscriptstyle L}}$	Mean value of the local hardness	$\overline{\eta_{_L}} = rac{1}{N}\sum_{i=1}^N \eta_{_L}^i$	HARDbar
$\Delta \eta_L$	Range of the local electron hardness	$\Delta \eta_L = \eta_L^{\rm max} - \eta_L^{\rm min}$	HARDrange
σ_η^2	Variance in the local hardness	$\sigma_{\eta}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\eta_{L}^{i} - \overline{\eta_{L}} \right]^{2}$	HARDvar
$\gamma_1^{\eta_L}$	Skewness of the local hardness distribution	$\gamma_1^{\eta_L} = \frac{\sum_{i=1}^N \left(\eta_L^i - \overline{\eta}_L\right)^3}{(N-1)\sigma^3}$	HARDskew

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\gamma_2^{\eta_L}$	Kurtosis of the local hardness distribution	$\gamma_{2}^{\eta_{L}} = \frac{\sum_{i=1}^{N} (\eta_{L}^{i} - \overline{\eta}_{L})^{4}}{(N-1)\sigma^{4}} - 3$	HARDkurt
\int_{η_L}	Integrated local hardness over the surface	$\int_{\eta_L} = \sum_{i=1}^N \eta_L^i a_i$	HARDint
F_N^{\max}	Maximum value of the electrostatic field normal to the surface		FNmax
$F_{\scriptscriptstyle N}^{{ m min}}$	Minimum value of the field normal to the surface		FNmin
$\overline{F_{_N}}$	Mean value of the field normal to the surface	$\overline{F_{_N}} = rac{1}{N}\sum_{i=1}^N \chi_L^i$	FNmean
$\sigma_{\scriptscriptstyle F}^2$	Variance in field normal to the surface	$\sigma_F^2 = \frac{1}{N} \sum_{i=1}^{N} \left[F_N^i - \overline{F_N} \right]^2$	FNvartot
$\sigma^2_{{\scriptscriptstyle F}{\scriptscriptstyle +}}$	Variance in the field normal to the surface for all positive values	$\sigma_{F+}^{2} = \frac{1}{m} \sum_{i=1}^{m} \left[F_{N}^{i+} - \overline{F_{N}^{+}} \right]^{2}$	FNvar+
$\sigma_{\scriptscriptstyle F-}^2$	Variance in the field normal to the surface for all negative values	$\sigma_{F_{-}}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[F_{N}^{i-} - \overline{F_{N}^{-}} \right]^{2}$	FNvar-
V _F	Normal field balance parameter	$v_F = \frac{\sigma_F^2 + \sigma_F^2}{\left[\sigma_F^2\right]^2}$	FNbal
${\cal Y}_1^{F_N}$	Skewness of the field normal to the surface	$\gamma_1^{F_N} = \frac{\sum_{i=1}^N \left(F_N^i - \overline{F}_N\right)^3}{(N-1)\sigma^3}$	FNskew
$\gamma_2^{F_N}$	Kurtosis of the field normal to the surface	$\gamma_{2}^{F_{N}} = \frac{\sum_{i=1}^{N} \left(F_{N}^{i} - \overline{F}_{N}\right)^{4}}{(N-1)\sigma^{4}} - 3$	FNkurt
\int_{F_N}	Integrated field normal to the surface over the surface	$\int_{F_N} = \sum_{i=1}^N F_N^i a_i$	FNint
$\int_{F_N}^+$	Integrated field normal to the surface over the surface for all positive values	$\int_{F_N}^+ = \sum_{i=1}^N F_N^i a_i \text{ if } F_N^i \ge 0$	FN+
$\int_{F_N}^{-}$	Integrated field normal to the surface over the surface for all negative values	$\int_{F_{N}}^{-} = \sum_{i=1}^{N} F_{N}^{i} a_{i} \text{ if } F_{N}^{i} < 0$	FN-

Descriptor	Description	Formula/ Reference	Symbol in CSV file
$\int_{ F_N }$	Integrated absolute field normal to the surface over the surface	$\int_{F_N} = \sum_{i=1}^N \left F_N^i \right a_i$	FNabs
	Additionally if the Sł	nannon Entropy is calculated	
H_{in}^{\max}	Maximum value of the internal Shannon Entropy		SHANImax
H_{in}^{\min}	Minimum value of the internal Shannon Entropy		SHANImin
$\overline{H_{_{in}}}$	Mean value of the internal Shannon Entropy	$\overline{H_{in}} = rac{1}{N}\sum_{i=1}^{N}H_{in}^{i}$	SHANIbar
$\sigma^2_{_{H_{in}}}$	Variance in the internal Shannon Entropy	$\sigma_{H_{in}}^2 = \frac{1}{N} \sum_{i=1}^{N} \left[H_{in}^i - \overline{H_{in}} \right]$	SHANIvar
$\int_{H_{in}}$	Integrated internal Shannon Entropy over the surface	$\int_{H_{in}} = \sum_{i=1}^{N} H_{in}^{i} a_{i}$	SHANItot
And if the external Shannon Entropy is available			
H_{ex}^{\max}	Maximum value of the external Shannon Entropy		SHANEmax
H_{ex}^{\min}	Minimum value of the external Shannon Entropy		SHANEmin
$\overline{H_{ex}}$	Mean value of the external Shannon Entropy	$\overline{H_{ex}} = \frac{1}{N} \sum_{i=1}^{N} H_{ex}^{i}$	SHANEbar
$\sigma^2_{_{H_{ex}}}$	Variance in the external Shannon Entropy	$\sigma_{H_{ex}}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[H_{ex}^{i} - \overline{H_{ex}} \right]$	SHANEvar
$\int_{H_{ex}}$	Integrated internal Shannon Entropy over the surface	$\int_{H_{ex}} = \sum_{i=1}^{N} H_{ex}^{i} a_{i}$	SHANEtot

1.10 Surface-integral models (polynomial version)

The polynomial surface-integral models that can be calculated by ParaSurf[™] are defined [10] using the expression

$$P = \sum_{i=1}^{ntri} f\left(V^{i}, IE_{L}^{i}, EA_{L}^{i}, \alpha_{L}^{i}, \eta_{L}^{i}\right) \cdot A^{i}$$
⁽¹⁰⁾

where P is the target property, usually a free energy, f is a polynomial function of the electrostatic potential V, the local ionization energy, IE_L , the local electron affinity, EA_L , the local polarizability, α_L and the local hardness, η_L . A^i is the area of the surface triangle i.

The molecular property P is printed to the output file and to the $<filename>_p.sdf$ ParaSurf[™] output SD-file. The individual values of the function f are added to the list of local properties written for each surface point to the .psf file if the surface details are output.

The surface-integral models themselves are not implemented directly in ParaSurf[™], but are read in general form from the SIM file, whose format is given in Section **3.11**. Thus, the users' own surface-integral models can be added to ParaSurf[™]. Data for generating surface-integral models can be derived simply from the .psf surface output for a normal ParaSurf[™] run. Note that the program options given in the SIM file must be the same for all the models included in the file and that they override conflicting command-line options.

1.11 Binned surface-integral models

A more recent type of SIM model, binned SIM models, [13] is now implemented in ParaSurf19[™] for the negative logarithm of the water-octanol partition constant, logPow. These models divide the surface into bins according to the values of the local properties and use the total surface area assigned to each bin as descriptors for multiple linear regression models. These models have been implemented for marching cube surfaces using either the isodensity or solvent-excluded surfaces and for the AM1, AM1^{*}, MNDO, MNDO/d, PM3 and PM6 Hamiltonians. In contrast to polynomial SIM models, they are encoded in the program and are output under the heading "ParaSurf™ ADMET Profiler". These logPow models are available for the MNDO, AM1, PM3, MNDO/d, AM1^{*} and PM6 Hamiltonians. The models use "conformationally averaged" structures within a standard calculational protocol in which the initial 3D structure is produced by CORINA [28] as the starting geometry for the semiempirical geometry optimization and uses only this one conformation to predict logPow for the compound. These models were trained with all verified values contained in the LogKOW dataset [29] and are those denoted "single conformation" trained with the "full" dataset in the original literature.

	IE_L	EA_{L}	$lpha_{_L}$ a	F_{N}	$\eta_{\scriptscriptstyle L}$	$\chi_{\scriptscriptstyle L}$
MEP	$MEP \times IE_L$	$MEP \times EA_L$	$MEP \times \alpha_L$	$MEP \times F_N$	$MEP \times \eta_L$	$MEP \times \chi_L$
IE_L		$IE_L \times EA_L$	$IE_L \times \alpha_L$	$IE_L \times F_N$	$IE_L \times \eta_L$	$IE_L \times \chi_L$
EA_L			$EA_L \times \alpha_L$	$EA_L \times F_N$	$EA_L \times \eta_L$	$EA_L \times \chi_L$
$lpha_{_L}$ a				$\alpha_L \times F_N$	$\alpha_L \times \eta_L$	$\alpha_L \times \chi_L$
F_N					$F_N \times \eta_L$	$F_N \times \chi_L$
$\eta_{\scriptscriptstyle L}$						$\eta_L \times \chi_L$

 Table 2
 The 28 local properties and products thereof used to construct binned area descriptors.

^a Not used for MNDO/d, AM1* or PM6

Local hydrophobicities and logPow models are available for the following combinations of Hamiltonians, surfaces and contours. The three letter model code is used to write the local hydrophobicity to the output .vmp and .psf files or to specify that the descriptors for the model are written out.

Table 3 Local hydrophobicity models and their model codes (all models use the single CORINA-derived conformations and are trained with the "full" dataset

Homiltonion	Model code		
Hamillonian	ParaSurf'11™	ParaSurf'19™	
AM1	LP1	OW1	
AM1*	LP2	OW2	
PM3	LP3	OW3	
MNDO	LP4	OW4	
MNDO/d	LP5	OW5	
PM6	LP6	OW6	

1.12 Spherical harmonic "hybrids"

Once the molecular shape or a local property have been fitted to a spherical-harmonic expansion, [16] the shape or property can be described succinctly as a series of spherical-harmonic "hybridization" coefficients analogous to the concept of hybrid atomic orbitals. Thus, for each value of 1 in Equation (1) the "hybridization" coefficient H_I is given by:

$$H_l = \sum_{i=-m}^{m} \left(c_l^m\right)^2 \tag{11}$$

The hybridization coefficients H_I can be used as additional descriptors for fast QSPR screening.

1.13 Descriptors and moments based on polynomial surface-integral models

ParaSurf[™] uses local properties defined in a surface-integral model (SIM, see Section **1.10**) to calculate descriptors analogous to those listed in **Table 1**. Additionally, "dipolar moments" of the local property are calculated. These are gauge-independent moments calculated by first shifting values of the local property so that their sum is zero and then calculating moments according to

$$\mu = \sum_{i=1}^{ntri} P_i \mathbf{r}_i \tag{12}$$

where μ is the dipolar moment, P_i the value of the local property i situated at position r_i.

The output for these properties derived from a SIM for logPow is shown below:

```
Descriptors calculated for logP:
 Dipolar moment x: -549.2 y: -247.9 z: -937.0
 Sum: 1114.
 Most positive value : 1.407
 Most negative value :
                          0.8325E-01
 Range
            :
                           1.324
Mean :
Mean positive :
Mean negative:
Total variance:
Positive variance:
                           0.1874
                          0.1874
                           0.000
                           0.2376E-01
                           0.2376E-01
 Negative variance :
                           0.000
 Balance parameter :
                           0.000
 Balance*variance
                            0.000
                    :
```

The values of these descriptors are often useful for deriving models directly related to the property modelled by the SIM. Note that no units are given in the output because they depend on the property modelled by the SIM.

1.14 Shannon entropy

The information content at the surface of the molecule can be defined based on the distribution of the four local properties over the surface using an approach analogous to that introduced by Shannon.[30]

Shannon defined the Shannon entropy, H, which corresponds to the amount of information (in bits) as

$$H = -\sum_{i=1}^{n} p_i \log_2(p_i)$$
(13)

where *n* is the number of possible characters and p_i is the probability that character *i* will occur. Note that, importantly, this definition of the amount of information is local (i.e. it only depends on the value of the probability of character *i*).

For a continuous property, X, Equation (13) becomes

$$H = -\int_{-\infty}^{\infty} p(X) \log_2 p(X) dX$$
(14)

If we now assume that the Shannon entropy at a point in space near a molecule is defined by the values of the four continuous local properties described above, we obtain

$$H = -\iiint p(V, I, E, \alpha) \log_2(V, I, E, \alpha) dV dI dE d\alpha$$
(15)

where $p(V, I, E, \alpha)$ is the probability of finding the values V, I, E and α . However, we can simplify this expression because the four properties are essentially independent of each other,[8-9] so that we can write

$$H = -\int p(V) \log_2 p(V) dV - \int p(I) \log_2 p(I) dI$$

$$-\int p(E) \log_2 p(E) dE - \int p(\alpha) \log_2 p(\alpha) d\alpha$$
 (16)

Transferring this definition to a molecule for which a triangulated surface of k triangles, where triangle i has area A_i and average values of the four local properties V_i , I_i , E_i and α_i we obtain

$$H = -\sum_{i=1}^{k} \left[p(V_i) \log_2 p(V_i) + p(I_i) \log_2 p(I_i) + p(E_i) \log_2 p(E_i) + p(\alpha_i) \log_2 p(\alpha_i) \right] \cdot A_i$$
(17)

where $p(X_i)$ is the probability that the value X_i of the property X, where X may be V, I, E or α , will occur.

ParaSurf^{\mathbb{M}} offers two alternatives as sources for the probabilities $p(X_i)$. The first, known as the "external" Shannon entropy, is to use probabilities taken from an external dataset and defined in a separate statistics file. The default "external" statistics file is called **bins.txt** and is read from the

ParaSurf[™] root directory. The statistics defined in **bins.txt** were derived from AM1 calculations of all the bound ligands defined in the PDBbind database [31] in their correct protonation states and at geometries obtained by optimizing with AM1 starting from the bound conformation.[27]

Alternatively, the user can define a custom "external" statistics file using the ParaSurf[™] module **binner** (available free of charge for ParaSurf[™] users). The "external" Shannon entropy is useful for relating a series of molecules to each other, but is sensitive, for instance, to the total charge of the molecule.

The "internal" Shannon entropy is calculated using probabilities determined from the surface properties of the molecule itself, and therefore corresponds more closely to Shannon's classical definition than the "external" Shannon entropy and the probabilities used are individual for each molecule. The "internal" Shannon entropy can be considered to represent the information content of the molecule. The properties of the two types of Shannon entropy will be described in a forthcoming paper.

1.15 Surface autocorrelations

Gasteiger et al. [27] introduced the concept of surface autocorrelations as powerful descriptions of molecular binding properties for quantitative structure-activity relationships (QSARs). In ParaSurf^M, autocorrelations A(R) are now defined as:

$$A(R) = \sum_{i=1}^{\text{npoints-1}} \sum_{j=i+1}^{\text{npoints}} \omega_{ij} \delta(R, r_{ij})$$
(18)

where r_{ij} is the distance between surface points i and j and ω_{ij} is a function of one or more local properties at the points i and j and δ_{ij} is 1.0 if r_{ij} is inside the bin centred on R and zero otherwise. Note that this is a different definition of the autocorrelation function to that used in earlier versions of ParaSurf[™]. Also, because the new algorithm for calculating the autocorrelations is very fast, all surface points are used, rather than sampling 10% as earlier.

Shape autocorrelation	€0ij = 1.0	
MEP autocorrelation	$\omega_{ij} = V_i \times V_j$	
Plus-plus MEP autocorrelation	$\boldsymbol{\omega}_{ij} = V_i \times V_j$	$(V_i > 0 \text{ and } V_j > 0)$
	ω _{ij} = 0.0	$(V_i < 0 \text{ or } V_j < 0)$
Minus-minus MEP autocorrelation	$\omega_{ij} = V_i \times V_j$	$(V_i < 0 \text{ and } V_j < 0)$
Plus-minus MEP autocorrelation	$\omega_{ij} = -V_i \times V_j$	$(V_i \times V_j < 0)$
	ωij = 0.0	$(V_i \times V_j > 0)$
Local ionization energy autocorrelation	$\omega_{ij} = IE_L^i \times IE_L^j$	
Local electron affinity autocorrelation	$\omega_{ij} = EA_L^i \times EA_L^j$	
Local polarizability autocorrelation	$\omega_{ij} = \alpha_L^i \times \alpha_L^j$	

Seven different autocorrelation functions are calculated by ParaSurf[™]. These are:

Generally, the shape autocorrelation and that based on the local polarizability correlate strongly with each other. The MEP correlation is the sum of its three components (plus-plus, plus-minus and minus-minus). However, the three components enable us to distinguish between ++ and – pairs of surface points, which both give a positive contribution to the autocorrelation function.

ParaSurf[™] calculates autocorrelations as vectors of A(R) values 64 elements long starting at an R-value of 0.0 Å and increasing in bins of width 0.2 Å up to a maximum value of 12.8 Å). **Figure 8** shows the eight autocorrelation functions for trimethoprim calculated with AM1.

Figure 8 The eight autocorrelation functions calculated using the AM1 Hamiltonian for trimethoprim.

The command-line argument **autocorr=<filename>** requests that similarities in the autocorrelation functions with the molecule described in **filename>**, where **filename>** must be a **ParaSurf.sdf** output file, are calculated and written out. The floating-point Tanimoto similarities S are defined as:

$$S = \frac{\sum_{i=1}^{nbins} A_A^i A_B^i}{\sum_{i=1}^{nbins} \left(A_A^i\right)^2 + \sum_{i=1}^{nbins} \left(A_A^i\right)^2 - \sum_{i=1}^{nbins} A_A^i A_B^i}$$
(19)

where A_A^i is the value of the autocorrelation function for molecule A and bin i etc. Note that although the normal range for a Tanimoto coefficient is from zero to one, marginally negative values may occur for the local ionisation energy or electron affinity.

These similarities are calculated for the entire range of each of the eight autocorrelation functions. These individual similarities can be written to a table file (see **0**) and are printed in the output file (see **3.6.4**).

1.16 Standard rotationally invariant fingerprints (RIFs)

Mavridis et al. [32] introduced standard rotationally invariant fingerprints (RIFs) based on the sphericalharmonic hybridization coefficients defined above. These fingerprints provide a detailed description of the molecular shape, electrostatics, donor/acceptor properties and polarizability as a standard series of 54 floating point numbers.

1.17 Maxima and minima of the local properties

Jakobi et al. [33] have described the calculation and use of the most significant maxima and minima of the local properties on the surface of the molecule. These points were used in the ParaFrag procedure to detect scaffold hops with high similarity and can be viewed as pharmacophore points.

1.18 Atom-centred descriptors

Hennemann et al. [34] have used atom-centred quantities calculated by ParaSurf[™] as descriptors in order to calculate the strengths of hydrogen bonds [34a] and for chemical reactivity models [34b]. These descriptors (based on conventional solvent-accessible surface areas [35] using Bondi van der Waals radii [36] and a default solvent radius of 1.4 Å), C-H bond orders for hydrogen atoms, the constitution of the localized lone-pair orbitals on nitrogen atoms and the π -charges of carbon atoms in conjugated π -systems. These descriptors are now output by ParaSurf19[™].

1.19 Fragment analysis

ParaSurf19[™] can divide the input molecule into fragments (which must be defined in the input SDF file) and perform a full surface analysis for each fragment. This option and its output will be described in detail below. ParaSurf19[™] now outputs .psf and .sdf files for each fragment for use in CImatch19[™] for substructure similarity.

2 PROGRAM OPTIONS

2.1 Command-line options

ParaSurf[™] program options are given as command-line arguments. Arguments are separated by blanks, so that no single argument may contain a blank character. Arguments may be written in any combination of upper and lower case. The options are:

Table 4 ParaSurf [™]	command-line options			
<name></name>		Base name for the input file (must be the first argument). <name> is not required if the first argument is – version (see below). The full file name can be given, in which case the name will be used unchanged as input.</name>		
		If an abbreviated file name is used, the input file is assumed to be if a file with this name exists.	<name>_e.h5</name>	
		Otherwise, the input file is assumed to be if a file with this name exists.	<name>_e.vwf</name>	
		Otherwise an SDF file will be used as input in the order given.	<name>_v.sdf <name>.sdf</name></name>	
		If neither of these files are found, the program will use an .sdf file written by the Cepos version of Mopac 6. These files are called	<name>_m.sdf</name>	
		The output files are	<name>_p.out <name>_p.sdf <name>.psf (optional) <name>.asd (optional) <name>_p.vmp (optional)</name></name></name></name></name>	
inlist=	<filename></filename>	Alternatively, the first argument can give the name of a text file containing a list of input files. The name of the output files will be derived from the name of the list file. Any eligible input file type can be given in the input list and mixtures of different file types are accepted. The hierarchy of input file types defined above applies.		
surf=	wrap cube	Shrink-wrap surface (default) Marching-cube surface		

contour=	isoden	The surface is defined by the electron density
	solvex	A solvent-excluded surface is used.
fit=	sphh	Spherical-harmonic fitting (default for surf=wrap)
	isod	Smooth to preset isodensity value (default for surf=cube)
	none	No fitting
iso=	n.nn	Isodensity value set to n.nn e ⁻ Å ⁻³
		(default for shrink-wrap surface = 0.0005;
		default for marching-cube surface = 0.007;
		minimum possible value = 0.00001)
rsol=	n.nn	A solvent-probe radius of n . nn Å is used for calculating the
		solvent-excluded or solvent-accessible surface (default=1.0,
		allowed range is from 0.0 to 2.0 Å)
mesh=	n.nn	The mesh size used to triangulate the surface is set to n.nn
		Å (default value = 0.2 Å, allowed range is from 0.1 to 1.0
		Å)
estat=	naopc	Use NAO-PC electrostatics
	multi	Use multipole electrostatics (gives ParaSurf'11 electrostatics with the
		"parasurf11" keyword, otherwise ParaSurf19)
	newmp	Use ParaSurf'12 or 19 multipole electrostatics (default)
psf=	on	Write .psf surface file
	off	Do not write .psf surface file (default)
asd=	on	Write anonymous SD (.asd) file
	off	Do not write .asd file (default)
vmp=	on	Write . vmp file for debugging. Map the MEP onto the surface
	off	Do not write .vmp file (default)
	mep	Write . vmp file for debugging. Map the MEP onto the surface
	iel	Write . vmp file for debugging. Map IE onto the surface
	eal	Write $.vmp$ file for debugging. Map EA _L onto the surface
	pol	Write . vmp file for debugging. Map α_L onto the surface
	har	Write . vmp file for debugging. Map η_{L} onto the surface
	eng	Write . vmp file for debugging. Map χ_L onto the surface
	anr	Write . vmp file for debugging. Map the number of the atom
		assigned to the surface element onto the surface
	fnm	Write . vmp file for debugging. Map F_N onto the surface
	sha	Write . vmp file for debugging. Map the Shannon entropy onto
		the surface
	<mod></mod>	Write . vmp file for debugging. Map the local property with the
		three-character designator <mod> defined in the SIM file onto</mod>
		the surface

Г

33

vmpfrag=	on	Equivalent to vmp=, but writes separate .vmp files for each fragment with only its atoms and the MEP projected onto the fragment surface. The files are named <filename><fragmentname>.vmp, where <fragmentname> is the name assigned to the fragment in the input SDF file.</fragmentname></fragmentname></filename>
	off	No fragment .vmp files will be written.
	all	As for on , except that the atoms for the entire molecule are written to the .vmp files with the surface for the fragment only.
grid=	<filename></filename>	Read the Cartesian coordinates at which to calculate a grid of $(log_{10}(\rho), MEP, IE_L, EA_L, \alpha_L, \chi_L, \eta_L$ and their first derivatives in x, y and z-directions). See Section 3.10.1
	auto	ParaSurf [™] calculates an automatic grid that excludes areas closer than 0.5 Å to the nuclei (see Section 3.10.2)
	vdw	ParaSurf [™] calculates an automatic grid that excludes areas closer than the corresponding van der Waals radius to the nuclei
	box	ParaSurf [™] calculates an automatic grid including all points regardless of their proximity to nuclei
	surf	The properties of the surface points are written to the .psf file
lattice=	n.nn	Sets the lattice spacing for the grid=auto, vdw or box option (see Section 3.10.2)
sim=	<filename></filename>	One or more surface-integral models will be read from the file <filename>.sim in the ParaSurf[™] root directory. <filename> can be upper or lower case or any mixture but must be exactly three characters long.</filename></filename>
center= or	on	The atomic and surface coordinates in the .psf output file will be centred for calculations that use spherical-harmonic fitting. Note that this means that the atomic coordinates in the SDF-output file (which are the input coordinates) will be different to those in the PSF-output file. This option is default.
centre=	off	The atomic and surface coordinates in the .psf output file will not be centred and will correspond to the input coordinates and those in the SDF -output file.
shannon	= <filename></filename>	Requests that Shannon entropies (both internal and external) be calculated. If no statistics file <filename></filename> is given, the default file (bins.txt in the ParaSurf [™] Root directory) will be used. If a statistics file is given that either does not exist, contains errors or is derived from ParaSurf [™] runs using different options to the current one, only the internal Shannon entropy is calculated.
autocorr	= <filename></filename>	Requests that the surface autocorrelation functions be calculated and written to the output .sdf file. <filename> must be a ParaSurf[™] output .sdf file that contains the autocorrelation functions. In this case, similarities between the two molecules will be calculated and printed (see also aclist=).</filename>

Г

34

table=	<filename></filename>	An ASCII table of the ParaSurf [™] descriptors will be written to the file <filename></filename> . If <filename></filename> exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created.
aclist=	<filename></filename>	An ASCII table of the calculated autocorrelations will be written to the file <filename></filename> . A total of 448 variables (7 properties in 64 bins each) are written for each molecule.
aslist=	<filename></filename>	An ASCII table of the calculated autocorrelation similarities will be written to the file filename . If filename exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created.
riflist=	<filename></filename>	An ASCII table of the calculated a standard rotationally invariant fingerprint (RIF) will be written to the file filename> . If filename> exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created.
translate	=n.nn	Requests that ParaSurf [™] performs low-resolution spherical- harmonic fits using translated centres at (+n.nn,0,0), (- n.nn,0,0), (0,+n.nn,0), (0,-n.nn,0), (0,0,+n.nn) and (0,0,-n.nn) relative to the original centre. The default value of n.nn is 0.5 Å. This value is obtained if translate is used alone. The maximum value of n.nn allowed is 1.0 Å. The translate option will be needed for later versions of ParaFit [™] that allow translation of the molecule when overlaying.
translate2	=n.nn	Requests that ParaSurf [™] performs a more detailed translation scan with low-resolution spherical-harmonic fits using translated centres at (+n.nn,0,0), (+2n.nn,0,0), (- n.nn,0,0), (-2n.nn,0,0), (0,+n.nn,0), (0,+2n.nn,0), (0,-n.nn,0), (0,-2n.nn,0), (0,0,+n.nn), (0,0,+2n.nn), (0,0,-n.nn) and (0,0,-2n.nn) relative to the original centre. The default value of n.nn is 0.25 Å. This value is obtained if translate2 is used alone. The maximum value of n.nn allowed is 0.5 Å. The translate2 option will be needed for later versions of ParaFit [™] that allow translation of the molecule when overlaying.
fragments		Perform a fragment analysis. The fragments must be defined in the input SDF file
desfile=	<filename></filename>	Write the binned SIM descriptors to the file <filename></filename> . If <filename></filename> exists, the values for the current molecule will be appended to the existing table, otherwise the file will be created. The descriptors are written as a comma-separated table with headers. Note that desmodel must also be defined.

desmodel= <code></code>	The bin definitions for the model denoted by <code> will be</code>
	used to calculate the descriptors for the table of binned SIM
	descriptors. The possible values of <code> and their</code>
	definitions are given in Table 2.
-version	Must be the first argument. Requests that ParaSurf [™] prints the
	version number to the standard output channel and then stops
	without performing a calculation.
eal09	Do not use the selection procedure for virtual orbitals [11]
	when calculating the local electron affinity. This option
	provides continuity with earlier versions of ParaSurf™
parasurf11	Backwards compatibility option: electron densities, local
	properties and electrostatic potential and field are calculated
	using the algorithms from ParaSurf'11
precise	More precise output of the local properties in grid calculations
locpol= aniso	Use the local polarizability calculated from anisotropic atomic
	polarizability tensors (default)
old	Use isotropic atomic polarizabilities to calculate the local
	polarizability (implied by the "parasurf11" option)
no_derivatives	Do not calculate the first derivatives of the local properties
	(default is to calculate the derivatives)

Examples:

parasurf test surf=wrap fit=sphh iso=0.03 psf=on estat=naopc

Use the input file test_e.h5, test_e.vwf, test_m.sdf, test.sdf or test_m.sdf to calculate a shrink-wrap surface with an isodensity value of 0.03 e⁻Å⁻³, perform a spherical-harmonic fit, use NAO-PC electrostatics and write the spherical-harmonic coefficients to test_P.sdf and the entire surface to test_P.psf.

parasurf test e.h5 surf=cube fit=none

Use the file test_e.h5 as input to perform a marching-cube surface determination without fitting and to calculate the descriptor set.

2.2 Options defined in the input SDF-file

2.2.1 Defining the centre for spherical-harmonic fits

The automatic determination of the molecular centre for spherical-harmonic fitting can be overridden by adding a field to the Input SDF-file with the tag:

<SPHH CENTER>

The centre can be defined using Cartesian coordinates using an input line (immediately after the **SPHH CENTER** tag) of the format:

Cartesian x.xx y.yy z.zz

where **x**.**xx**, **y**.**yy** and **z**.**zz** are the x, y, and z-coordinates, respectively. The capitalization of "Cartesian" is required.

Alternatively, a list of atoms can be given using the format

Atoms n1 n2 n3 n4 n5 n6

where **n1** etc. are the numbers of the atoms to be used to calculate the centre of gravity. The capitalization of "**Atoms**" is required and the list of atoms is limited to one line.

2.2.2 Defining fragments

Molecular fragments can be defined in the input SDF file and fragments calculations requested using the fragments options, for instance

parasurf test surf=cube fragments

Figure 9 shows a sample <fragment> block from an SDF input file.

```
> <FRAGMENTS>
Start fragment
phenyl
     4 5 15 16 19 25 33
  3
End fragment
Start fragment
methoxy1
  1 2 22 23 24
End fragment
Start fragment
methoxv2
 17 18 34 35 36
End fragment
Start fragment
methoxy3
 20 21 37 38 39
End fragment
Start fragment
methylene
  6 26 27
End fragment
Start fragment
thymine
  7 8 9 10 11 12 13 14 28 29 30 31 32
End fragment
Start fragment
everybody
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
End fragment
> <END FRAGMENTS>
```

Figure 9 A sample <FRAGMENTS> input block.

The first line after each "Start fragment" line (note the upper and lower case, which are necessary) defines the name given to the fragment. This is followed by the numbers of the atoms that make up the fragment (20i4, fixed format). Note that the fragments need not be mutually exclusive. The fragment "everybody" in the above example, for instance is the entire molecule. The fragment-definition block begins with

> <FRAGMENTS>

and ends with

> <END FRAGMENTS>

tags.

Figure 10 shows the input molecule and the fragments.

Figure 10 The fragments defined in the SDF input example.

In a FRAGMENTS run, ParaSurf[™] first performs a calculation for the entire molecule and then analyses the molecular surface according to the standard ParaSurf[™] technique used to assign surface triangles to individual atoms. The output for the phenyl fragment is shown in **Figure 11**. A similar output section is printed for each fragment. The results and the descriptors for each fragment are taken from the surface for the whole molecule and therefore refer to the fragment (both its electronic properties and the area of its surface) within the context of the molecule itself. The coordinates given for the maxima and minima of the local properties refer to the input geometry of the entire molecule.

<> Results for fragment number 1 : phenyl								
Surface are	a :	47.21	Angstron	n**2				
Fragment ch	arge :	-0.01	-					
		T 11 T		HADD	-	- (31)	DOI	
Mean •	MEP -6 0	16L 402 5	EAL -67 6	1480 HARD	ENEG 167 5	-4 0	POL 0 76	
Mean +ve:	10.9	102.0	0.0	200.1	107.0	8.6	0.70	
Mean -ve:	-13.0		-67.6			-8.7		
Maximum :	18.9	525.3	-19.9	303.2	222.2	16.9	1.4	
Minimum :	-53.1	337.6	-103.9	191.6	142.3	-42.4	0.33	
Variance:	200.3	919.4	562.5	594.8	146.2	85.0	0.54E-01	
Var. +ve:	29.8		0.0			21.9		
Varve: Balance :	103.2		0 000			28.5		
Skew :	-0.4	0.7	0.2	-0.1	1.1	1.6	-0.41	
Kurtosis:	0.4	0.6	-1.3	-1.0	1.7	-0.2	-0.72	
MEP Maxima	for this f	ragment						
Number	X	У	Z	0 15	MEP			
4 :	1.6569 4.2421	1.8397	-2.511	L8 15	.9683			
0:	-4.3431	-1.0855	-1.101	10 10	.8870			
IEL Maxima	for this f	ragment						
Number	х	У	Z		IEL			
1 :	1.6861	-2.6103	-3.414	12 525	.3250			
EAL Maxima	for this f	ragment	_		T 7 T			
Number 1 •	_1 /71/	-2 0603	_3 929	25 _22	LAL 1779			
2 •	0 0069	-1 2520	-4 128	35 -19	8861			
3:	-2.5431	-0.8270	-3.528	35 -27	.9933			
4 :	0.8569	-1.1103	-0.628	35 -25	.1242			
6 :	-0.7431	-2.4270	-0.478	85 -28	.5599			
POL Maxima	for this f	ragment			207			
Number	X _0 7431	_3 7603	_3 /79	05 1	POL			
1 :	-0.7431	-3.8603	-3.470	25 1	3698			
2.	-0.0040	-3.0003	-3.270)] I	. 5090			
POL Minima	for this f	ragment						
Number	х	У	Z		POL			
23 :	-4.1431	-1.0103	-2.528	35 0	.3418			
33 :	1.6569	1.1897	-1.028	35 0	.3529			
FN Mawima f	or this fo	agmen+						
Number	VI UIIS II	ayiiieii c v	7		FN			
12 :	1.2569	2.0897	-1.790)2 14	.2146			
15 :	-4.2931	-1.0603	-1.028	35 15	.7029			

Figure 11 ParaSurf20[™] output for the phenyl fragment defined above.

The individual surfaces of the fragments are shown in Figure 12.

Figure 12 Surfaces calculated for the individual fragments, colour coded according to the MEP in kcal mol⁻¹. The fragments (clockwise from the top right) are methoxy1, methoxy2, methoxy3, thymine, phenyl and methylene.

ParaSurf20[™] writes both .psf and abbreviated (only atoms and bonds) .sdf output files for each fragment. These files are named **<molecule>_<fragment>_e.psf** and **<molecule>_<fragment>_e.sdf**, where **<fragment>** is the fragment name defined in the input .sdf file.

These two files are needed for substructure matching using Clmatch[™].

3 INPUT AND OUTPUT FILES

 $\mathsf{ParaSurf}^{\scriptscriptstyle\mathsf{M}}$ uses the following files for input and output:

Table 5 ParaSurf [™] i	e 5 ParaSurf [™] input and output files			
File	Name	Description		
Input	<filename></filename>	The complete filename with extension.		
	<filename>_e.h5 (if available) or</filename>	EMPIRE [™] _e. h5 file		
	<filename>.vwf (if available) or</filename>	EMPIRE [™] . vw£ file		
	<filename>_v.sdf or</filename>	VAMP.sdf file output. VAMP must be run with the ALLVECT option to be able to calculate all the properties. The VAMP version used must be able to calculate AO-polarizabilities.		
	<filename>.sdf or</filename>	An input SDF file, typically produced by EMPIRE [™] or VAMP		
	<filename>_m.sdf</filename>	If no VAMP . sdf file is found, ParaSurf [™] defaults to a CeposMopac 6 . sdf file. It is strongly recommended to use the EF option for geometry optimizations in Mopac.		
alternatively				
Inlist		I ne alternative input option is to define a file in which the		
		types can be used and mixed. The file-type rules given above apply.		
Hamiltonian	<hamiltonian>.par</hamiltonian>	The EMPIRE parameters file (found in the EMPIRE etc directory). The environment variable EMPIRE_ROOT must be set to point to this directory. The name <hamiltonian> will be taken from the input SDF file. Calculations using the hpCADD Hamiltonian must use an _e.h5 or .vwf file as input because atom types are not defined in SDF files. In these cases, the <hamiltonian>.par file is not required. The parameters are read from the input file.</hamiltonian></hamiltonian>		
Output	<filename>_p.out</filename>	Always written.		
SD-file	<filename>_p.sdf</filename>	Always written.		
ASD-file	<filename>.asd</filename>	Anonymous SD-file. Requested by the option asd=on		
PSF-file	<filename>.psf</filename>	ParaSurf [™] surface file. Requested by the option psf=on		
VMP-file	<filename>_p.vmp</filename>	Debug file.		

SIM-file	<filename>.sim</filename>	Surface-integral model definition. <filename> must</filename>
		have exactly three characters and the file must reside in
		the ParaSurf [™] executable directory.
Descriptor	User defined	An ascii, comma-separated file that contains a line of
table file		descriptors for each molecule. This file will be created if it
		does not exist or an extra line will be appended if it does
		exist.
Binned SIM	User defined	An ascii, comma-separated file that contains a line of the
descriptor file		descriptors generated for the bin definitions used in the
		model defined by <code> in the desmodel=</code>
		command-line option. A header defining the descriptors
		is printed as the first line.
Autocorrelation	User defined	An ascii, comma-separated file that contains the
fingerprint file		molecule's ID and 448 binned autocorrelation values.
		The file will be overwritten if it exists
Autocorrelation	User defined	An ascii, fixed format file that contains a line of seven
similarity file		autocorrelation similarities for each molecule. This file will
		be created if it does not exist or an extra line will be
		appended if it does exist.
RIF table file	User defined	An ascii, comma-separated file that contains a line of the
		standard rotationally invariant fingerprint (RIF [36]) for
		each molecule. This file will be created if it does not exist
		or an extra line will be appended if it does exist.

3.1 EMPIRE[™]HDF5 (*e.h5) output files

EMPIRE[™] _e.h5 output files are the primary input type for ParaSurf20[™]. The format is defined in the **EMPIRE20[™] manual**.

3.2 The EMPIRE[™] or VAMP .sdf files as input

EMPIRE[™] or VAMP .sdf files, an extension of the MDL .sdf file format,[**37**] are the primary communication channel between VAMP and ParaSurf[™]. The atomic coordinates and bond definitions are given in the MDL format as shown in **Figure 13**. The remaining fields are indicated by tags with the form:

<FIELD NAME>

FIELD_NAME is a predefined text tag used to locate the relevant data within the .sdf file.

Only the important fields for a ParaSurf[™] calculation will be described here:

1-Bromo-3,5-difluorobenzene OMVAMP81A04250313563D 1 0.00000 0.00000 0					
1-Bromo-3, OMVAMP81A0 12 12 0 -2.6274 -1.2738 -0.5810 0.8231 1.5096 1.5266 0.8142 1.7431 -0.5805 -1.1264 2.6274 -1.1515 1 2 1 2 3 4 3 4 4 4 5 1 4 6 4 6 7 4 7 8 1 2 9 4 7 9 4 3 10 1	0 0 0 0.2410 0.2410 1.4623 1.4389 2.6055 0.2198 -0.9793 -2.6055 -0.9840 2.4167 0.2339 -1.9253	1 0.00000 1 0.00000 1 0.0003 F 0.0003 C 0.0003 C 0.0004 F 0.0001 C 0.0001 C -0.0004 Br 0.0002 C -0.0003 H 0.0003 H 0.0001 H	0.00000 V2000	0	
9 12 1 M END					

Figure 13 The headers and titles, atomic coordinates and bond definitions from a VAMP .sdf file. The format follows the MDL definition. [26].

<HAMILTONIAN>

The Hamiltonian field defines the semiempirical Hamiltonian (model and parameters) used for the calculation. The Hamiltonian must be defined for ParaSurf[™] to be able to calculate the electrostatics and the local polarizabilities. NAO-PC electrostatics and the local polarizability are not available for all methods. Quite generally, the multipole electrostatics model is to be preferred over the NAO-PC model, which can only be used if the VAMP .sdf file contains a block with the tag:

<NAO-PC>

NAO-PCs cannot be calculated for methods with d-orbitals. The local polarizability calculation has not yet been extended to these methods, but will be in a future release.

The following table gives an overview of the methods and their limitations:

Tuble 0	rear international and the available electrostate and polarizability models.				
	Hamiltonian	Reference	Electrostatics		Local
			NAO-PC	Multipole	Polarizability
	MNDO	[20 b]	YES	YES	YES
	AM1	[22]	YES	YES	YES
	PM3	[23]	YES	YES	YES

 Table 6
 Hamiltonians and the available electrostatic and polarizability models

ParaSurf20 Users' Manual

MNDO/c	[38]	YES	YES	NO
MNDO/d	[20 a]	NO	YES	NO
AM1*	[2 4a]	NO	YES	NO
RM1	[39]	NO	YES	NO
PM6	[40]	NO	YES	NO
hpCADD	[41]	NO	YES	NO
MNDO-F	[42]	NO	YES	NO

<VAMPBASICS>

The VAMPBASICS block contains the following quantities (FORTRAN format 6f13.6):

Heat of Formation	kcal mol ⁻¹
HOMO energy	eV
LUMO energy	eV
Dipole moment	
x-component	Debye
y-component	Debye
z-component	Debye

<TOTAL COULSON CHARGE>

The total charge of the molecule.

<density matrix elements>

The DENSITY MATRIX ELEMENTS block contains the one-atom blocks of the density matrix for the non-hydrogen atoms. For an sp-atom, there are ten elements, for an spd-atom 45. The squares of the diagonal elements for hydrogen atoms are included in the **<CHARGE ON HYDROGENS>** block that follows the density matrix. The density-matrix elements are used in ParaSurf[™] to calculate the local properties and are essential.

<ORBITAL VECTORS>

The ORBITAL VECTORS block contains the MO-eigenvectors and related information and is essential for calculating the local properties. VAMP must be run with the keyword **ALLVECT** in order to write all the MO vectors to the SDF file.

The entire SDF input file is echoed to the **<filename>_p.sdf** output file and the properties calculated by ParaSurf[™] are added in additional blocks at the end.

3.2.1 Multi-structure SD-files

ParaSurf[™] can read SD-files containing more than one molecule (e.g. those produced by EMPIRE[™]) and process them in one run. Multiple SDF files can also be contained in the input list file if used. The command-line arguments apply to each molecule in the SD-file and the same semiempirical Hamiltonian must be used for each molecule or an error message will be printed and the program terminated.

As part of this enhancement, ParaSurf[™] can use SD-files that do not contain the one-atom blocks of the density matrix explicitly. Thus, SD-files that only contain the molecular-orbital Eigenvectors and Eigenvalues give full ParaSurf[™] functionality within the previous restrictions that:

- Polarisabilities are not yet available for Hamiltonians that use d-orbitals (MNDO/d and AM1*).
- NAO-PC electrostatics are only available if the NAO-PCs are present in the SD-file. Multipole electrostatics are available for all Hamiltonians.

The output SD-file written by ParaSurf[™] also contains multiple molecules as in the input file. Other ParaSurf[™] output files (.asd, .vmp etc.) are also concatenated.

Multiple SD-files can be used with a SIM file exactly as single molecules.

3.3 The Cepos MOPAC 6.sdf file as input

Cepos Mopac 6 writes an .sdf file containing the above blocks with the exception that the MOPACBASICS block replaces VAMPBASICS. No additional keywords are required to request the correct .sdf output for ParaSurf[™].

3.4 The <Hamiltonian>.par file

The file <Hamiltonian>.par is used by EMPIRE to define the named Hamiltonian and elements and supply the parameters. This file is also used by ParaSurf[™] for the same purpose. The <Hamiltonian>.par file is not necessary if an EMPIRE[™] .vwf file is used as input.

3.5 The EMPIRE[™] binary wavefunction file (.vwf)

The binary wavefunction file contains all the information necessary to process the results of the EMPIRE[™] calculation further. It is the new primary input file format for ParaSurf and does not require a Vhamil.par file to be present. Its contents are:

Definition	Туре
First comment line from the input	character(len=80)
Title line from the input	character(len=80)
Hamiltonian	character(len=6) "AM1 ", "AM1* ",
	"MNDO ","MNDO/c","MNDO/d", "PM3 " or
	"PM6 "
Formalism	character(len=3) "RHF"
Number of atoms	integer
Number of orbitals (Norbs)	integer
Number of doubly occupied orbitals	integer
Number of singly occupied orbitals	Integer = 0
Charge on the molecule	integer
Heat of formation in kcal mol ⁻¹	double precision
Energy of the HOMO (eV)	double precision
Energy of the LUMO (eV)	double precision
x, y and z-components of the dipole moment	(Debye) double precision(1:3)
For each atom:	
Atomic number	integer
Cartesian coordinates	double precision(1:3)
Number of atomic orbitals	integer
Principal quantum number (s and p)	integer
Principal quantum number (d)	integer
Slater exponents (ζ_s , ζ_p , ζ_d)	double precision(1:3)
Overlap integrals (β_s , β_p , β_d)	double precision(1:3)
Multipole parameters (dd and qq)	double precision(1:2)
End atoms	
Eigenvalues (eV)	Double precision(1:Norbs)
Eigenvectors	Double precision(1:Norbs ²)

INPUT AND OUTPUT FILES

47

3.6 The ParaSurf[™] output file

The ParaSurf[™] output file provides the user with information about the calculation and the results. It is, however, not intended as the primary means of communication between ParaSurf[™] and other programs. Thus, the essential information contained in the output file is also available from the ParaSurf[™] output .sdf file.

3.6.1 For a spherical-harmonic surface

Figure 14 shows the output for a calculation using the options **surf=wrap fit=sphh translate** for trimethoprim, **1**.

ParaSurf [™] output for trimethoprim, 1 , using a spherical-harmonic surface
<> ParaSurf'20, Revision 518 <> Copyright (c) 2006-2020 Cepos InSilico GmbH. All rights reserved.
<> Input = 02-trimethoprim_e.h5
<> Program options :
Using shrink-wrap isocontour surface Fitting surface to spherical harmonics Translations for spherical-harmonic fits: 1 step of 0.5000 Angstrom in each direction. Using an isodensity surface contour Isodensity value = 0.5000E-03 electrons/Angstrom**3 Triangulation mesh = 0.20 Angstrom Using multipole electrostatics
<>>> Molecule 1 of 1 (molecule 1 of file 1) <<>> <> AM1 calculation for Trimethoprim
A Translated arbayical barrania fita.
dy dy dz rmsd
0.0000 0.0000 0.0000 0.3827
0.5000 0.0000 0.0000 0.5516
-0.5000 0.0000 0.0000 0.4939
0.0000 0.5000 0.0000 0.5333

Pai	raSurf™ ou	tput for trimethe	oprim, 1 , using a spherical-harmonic surface
	0.0000 -0	0.5000 0.0000	0.5173
	0.0000 (0.0000 0.5000	0.5406
	0.0000 (0.0000 -0.5000	0.4147
<>	Fitting s	surface to sphe	erical harmonics
<>	Order(1)	RMSD	
	0	0.01000105	
	0	2.01089105	
	1	2.0012/333	
	2	1 14077439	
	4	0.96503847	
	5	0.68895234	
	6	0.59959970	
	7	0.51738756	
	8	0.48303027	
	9	0.45863246	
	10	0.42421733	
	11	0.39245823	
	12	0.37705705	
	13	0.36589562	
	14	0.34813084	
	10	0.32022024	
<>	Spherica	l harmonic fit	for MEP.
<>	Order(1)	RMSD	
	01001(1)	10100	
	0	12.40925126	
	1	12.34936535	
	2	9.24767869	
	3	8.29520894	
	4	6.82604708	
	5	5.74016736	
	6	4.82361304	
	7	4.20238419	
	8	3.80809252	
	9	3.532/92/9	
	11	2 62655657	
	12	2.37719321	
	13	2.06508075	
	14	1.98450157	
	15	1.83823341	
	16	1.70105512	
	17	1.54569211	
	18	1.34104884	
	19	1.21134422	
	20	1.0//95095	
~	Spherica	l barmonic fit	for IF(1).
<>	Order(1)	RMSD	101 IE(1).
	01001(1)	10100	
	0	44.58374089	
	1	39.48011643	
	2	37.78271586	
	3	36.00262351	
	4	32.26926567	
	5	29.13121381	
	6	26.31233682	
	/	25.29324833	
	8	23.80189490	
	10	22.02913433	
	11	20.34316053	
	12	19.20169704	
	13	18.03415287	
	14	17.13820150	
	15	16.87288203	
	16	16.21836809	
	17	14 78024199	

ParaSurf20 Users' Manual

ParaSurf [™] out	put for trimethoprim, 1 , using a spherical-harmonic surface
19	12 62656120
10	13.00020100
19	13.00220100
20	13.00920100
<> Sphorical	harmonic fit for FA(1).
<> Order(1)	RMSD
<> OIGET(1)	100
0	14 75768550
1	14 56778932
2	14 81226613
3	11 53667770
4	10.81157591
5	9.78683286
6	9.76088158
7	9.36930127
8	8.72312191
9	8.01247162
10	7.52779933
11	7.18457911
12	6.90751503
13	5.87600271
14	5.39442043
15	4.92899696
16	4.68675031
17	4.48231257
18	4.20878898
19	4.02932296
20	3.88466522
<> Spherical <> Order(1)	harmonic fit for Field(N): RMSD
0	10 23351059
1	10.22698544
2	9.38026697
3	9.05197320
4	8.17974574
5	7.54872525
6	6.97145952
7	6.65557405
8	6.39379144
9	6.09450343
10	5.46359451
11	4.86036822
12	4.43804012
11	4.1100373
15	3.82377059
16	3.54888402
17	3.20757452
18	2.77490419
19	2.49775087
20	2.27724145
<> Spherical <> Order(1)	harmonic fit for Alpha(l): RMSD
Ο	0.24569380
1	0.24643883
2	0.23369797
.3	0.20666986
4	0.18882275
5	0.17443262
6	0.16913089
7	0.15777138
8	0.14830906
9	0.13948118
10	0.12508372
11	0.11462512
12	0.10549899
	QETCEQEN'N

ParaSurf [™] output for trimethop	orim, 1 , using	a spherical-harmonic surface
140.09585367150.09003283160.08226668170.07498713180.06877556		
190.06575083200.06285391		
<pre><> Property ranges: Density : 0.1002E-03 IE(1) : 325.71 EA(1) : -112.62 MEP : -50.24 Alpha(1) : 0.2167 Field(N) : -52.88</pre>	3 to 0.1834 1 to 55 2 to -2 4 to 1 7 to 1 8 to 1	4E-02 54.60 29.19 19.03 .5078 19.79
<> Descriptors :		
Dipole moment : Dipolar density : Molecular pol. : Molecular weight : Globularity : Total surface area : Molecular volume :	1.2492 0.2450E-02 31.2348 290.32 0.7559 408.30 509.82	Debye Debye.Angstrom**-3 Angstrom**3 Angstrom**2 Angstrom**3
Most positive MEP : Most negative MEP : Mean +ve MEP : Mean -ve MEP :	19.03 -50.24 6.29 -11.87	kcal/mol kcal/mol kcal/mol kcal/mol
Mean MEP : MEP range : MEP +ve Variance : MEP -ve Variance : MEP total variance :	-2.38 69.26 15.51 133.18 148.69	<pre>kcal/mol kcal/mol (kcal/mol)**2 (kcal/mol)**2 (kcal/mol)**2</pre>
MEP balance parameter: MEP balance*variance : MEP skewness : MEP kurtosis : Integral MEP :	0.0934 13.8910 -1.3150 1.5930 -823.441	kcal/mol kcal.Angstrom**2/mol
Maximum IE(1) : Minimum IE(1) : Mean IE(1) : IE(1) range : IE(1) variance : IE(1) skewness :	554.60 325.71 422.42 228.89 1947.78 0.6852	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2</pre>
IE(l) kurtosis : Integral IE(l) :	-0.3191 7450.24	eV.Angstrom**2
Maximum EA(l) : Minimum EA(l) : Mean +ve EA(l) :	-29.19 -112.62 0.00	kcal/mol kcal/mol kcal/mol
Mean -ve EA(l) : Mean EA(l) : EA(l) range : EA(l) tye variance :	-93.26 -93.26 83.43 0.00	kcal/mol kcal/mol (kcal/mol)**2
EA(1) -ve variance : EA(1) total variance : EA(1) skewness : EA(1) kurtosis :	203.22 203.22 1.5615 3.0492	(kcal/mol) **2 (kcal/mol) **2
Integral EA(1) : EA(1) balance param. : Fraction pos. EA(1) :	-1647.43 0.0000 0.0000	eV.Angstrom**2 (= 0.00 Angstrom**2)
Max. local Eneg. : Min. local Eneg. : Mean local Eneg. : Local Eneg. range : Local Eneg. variance : Local Eneg. skewness :	234.17 113.01 164.58 121.15 453.89 0.66	<pre>kcal/mol kcal/mol kcal/mol (kcal/mol)**2</pre>

ParaSurf [™] output for trin	nethoprim, 1 , us	sing a spheric	al-harmonic s	surface	
Local Eneg. kurtos	is: 0	.01			
Integral local Ene	g.: 2901.40	eV.Angst	rom**2		
Max. local hardnes	s : 321	.14 kcal/mol			
Min. local hardnes	s: 187	.80 kcal/mol			
Mean local hardnes	s: 257	.84 kcal/mol			
Local hard. range	: 133	.34 kcal/mol			
Local hard. varian	ce: 621	.61 (kcal/mol	.)**2		
Local hard. skewne	ss: U	.39			
Local nard, kurtos	1S: -U	.39			
Integral IOCal Har	u.: 4J40.04	ev.Angst	.10111 2		
Maximum alpha(l)	· 1 508	Angstrom*	* 3		
Minimum alpha(l)	: 0.2167	Angst.rom*	**3		
Mean alpha(1)	: 0.4778	Angstrom*	*3		
Alpha(1) range	: 1.291	Angstrom*	*3		
Variance in alpha(1) : 0.5880E·	-01 Angstrom*	* 6		
Alpha(l) skewness	: 1.5	350			
Alpha(l) kurtosis	: 1.5	719			
Integral Alpha(l)	: 194.675	Angstrom	ı**5		
Maximum field norm	ai: 19.79 1	kcal/mol.Angs	strom		
Minimum field norm	al: -52.88	kcal/mol.Angs	trom		
Field range	27	kcal/mol Angs	trom		
Total field varian	ce · 104 51	(kcal/mol And	(strom) **2		
+ve field variance	• 11 75	(kcal/mol And	(strom) **2		
-ve field variance	: 116.66	(kcal/mol.And	(strom) **2		
Field balance para	m.: 0.08	(,,		
Field skew	: 2.46				
Field kurtosis	: 5.016				
Integral F(N)	: 44.29	kcal.Angst	rom/mol		
Integral F(N +ve)	: 1456.	kcal.Angst	rom/mol		
Integral F(N -ve)	: -1411.	kcal.Angst	rom/mol		
Integral F(N)	: 2867.	kcal.Angst	rom/mol		
<> Spherical-Harmonic	Hybridization				
<> Sphericar narmonic	nybridizacion	•			
Shape hybrids	:				
16.009829 1.3728	17 3.546636	2.694215	1.350637	1.644736	
0.762859 0.6584	50 0.375879	0.356109	0.403255	0.301454	
0.190717 0.1997	90 0.230856	0.204298			
MEP hybrids	:				
7.933149 4.5976	80 29.922219	11.318758	14.110388	11.571848	
10.218265 8.3971	42 5.648607	4.10/24/	4.808593	4.310/89	
3.286162 3.5163	00 1.781333	2.046284	1.4/9/21	1.564010	
1.00//0/ 1.4000	09 1.370190				
IE(l) hvbrids	:				
1475.0521 69.54	81 57.5300	47.7632	44.9854	44.0214	
43.8728 28.82	64 37.2234	34.3202	20.0717	16.1371	
20.3376 18.39	59 18.1552	13.1769	13.3157	17.9899	
17.9262 16.05	0.0000				
EA(l) hybrids	:				
317.0647 7.72	33 18.9959	33.3742	15.7478	17.4142	
11.2546 9.80	56 11.5662	10.4079	9.5758	8.2229	
6.558/ 9.74	66 6.2998	/.1211	4.4531	4.36/6	
4.83/9 4.22	3.5057				
Alpha(1) hybrids	:				
1.83384637 0.076645	33 0.42301457	0.37094086	0.26153885	0.25356338	
0.19288699 0.224930	23 0.17302555	0.16204464	0.15501572	0.12026037	
0.12327202 0.106192	42 0.08300201	0.08160683	0.07624231	0.07223924	
0.07247762 0.052600	74 0.04868363				
Field(N) hybrids	:	·		10	
2.6300 2.09	15.8345	8.7238	12.1449	10.8141	
9.8/15 9.34	41 7.0440	5.6698	/.0710	6.5542	
0.24/3 6.05	42 3.3896	3.6944	১.∠১∀১	3.//36	

ParaSurf	™ ou	tput fo	or trime	ethopri	m, 1 , I	using	a sphe	erical-h	armor	nic sur	face			
4.	2053		3.4600)	2.909	2								
<> Stan and	dard D. W.	rotat . Ritc	ional hie, S	ly inv J. Chei	ariant m. Inf	fing . Mod	erprin el., 2	nt:(L. 2007, 4	Mavrio 7, 178	dis, B 37-179	. D. H 6.)	ludson		
4	.0012	23	1.1	7167	1.	88325		1.6414	1	1.16	217			
1	.2824	47 34	3.75	3418 5638	2. 3.	40174		3.1966	2	5.4/ 2.89	012 778			
2	.3766	58	2.02	2663	2.	19285		2.0762	4	1.81	278			
3	8.406	54 36	8.33	3955 2365	'/. 17	58486		6.9110	9	6.70 4.35	712 843			
5	.7770)4	3.96	5835	4.	17304		3.3547	8	1.35	420			
0.	27684	19 29	0.650)396	0.6	09049	C	.51140 3 9792	9 5	0.503	551 360			
3	.4849	96	3.28	3849	3.	14190		3.0568	2	2.65	406			
2	.3811	13	2.65	5914	2.	56012		2.4994	6					
<> Atom	ic sı	ırface	prope	erties	:									
Atam 2	Area	M	EP	IE mav	(1) min	E	A(l) min	mean mol	Fie	ld(N) min	Ene	g(L) min	Har	d(L) min
C 1 2	1.190	-4.98	-24.62	474.52	440.67	-84.14	-97.48	0.695	-0.83	-19.62	195.19	171.59	279.33	268.79
0 2 3	3.298	-15.19	-48.76	483.54	395.34	-68.95	-88.24	1.012	-10.65	-35.98	204.70	153.55	278.84	238.13
C 4 2	2.301	-1.10	-42.20	473.04	358.04	-47.63	-88.64	0.844	0.11	-23.13	198.97	147.82	252.80	202.83
C 5	1.315	-2.84	-11.05	443.61	381.75	-69.71	-93.96	0.779	-2.54	-6.76	174.83	152.50	268.78	226.30
C 6 (0.000	-1.56	-11.81	420.68	353.37	-51.21	-93.16	0.865	-0.54	-7.17	169.84	141.72	250.85	207.23
C 8	6.599	0.72	-22.08	435.15	362.30	-35.17	-99.13	0.778	2.08	-15.48	176.42	150.10	258.90	203.03
N 9 .	7.657	-9.91	-40.75	444.04	328.38	-82.14	-109.12	1.186	-10.05	-52.88	175.09	113.01	269.73	214.66
N 11 1	1.649	-14.32	-23.08	495.39 511.29	446.84	-62.99	-82.88	0.790	-16.62	-22.27	208.37	194.52	200.00	213.00
N 12	6.596	-9.44	-39.65	444.88	325.71	-80.14	-106.62	1.030	-10.90	-51.98	172.09	115.02	274.06	206.65
C 13	7.455 1.811	4.99	-25.73	511.75 489 46	366.67 443.66	-34.09	-96.81	0.812	6.63 -18.52	-21.17	215.41	152.09 184 50	296.33 285.59	201.39 256 30
C 15	4.922	-0.84	-11.94	434.32	358.04	-52.10	-100.46	0.747	2.70	-9.38	173.09	145.62	261.23	205.09
C 16 5	5.487	-2.04	-37.62	476.46	346.23	-29.19	-99.46	0.820	2.98	-22.97	200.41	139.18	276.05	187.80
C 18 (0.967	-23.74 9.69	-38.38	475.29 505.07	409.49	-83.99	-98.88	0.959	-11.17	-33.70	207.97	165.28	276.61	240.88 266.80
C 19 5	5.387	-1.42	-46.07	485.07	325.82	-36.31	-103.12	1.007	-5.14	-29.69	201.93	133.19	286.11	189.83
0 20 4 C 21	4.532	-34.23	-50.24	477.49	3/2.31	-93.35	-95.93	1.085	-18.29	-43.77	201.85	143.15 157.88	279.41	228.83 267.65
H 22 24	4.371	9.65	-29.37	508.62	383.66	-87.46	-97.42	0.402	6.63	-16.31	209.38	145.02	299.24	238.64
H 23 1	7.654	12.03	-11.10	503.81	382.61	-76.92	-97.29	0.369	7.51	-8.88	207.26	145.68	296.55	236.88
H 24 10	6.426	12.26	0.37	450.62	398.89	-84.39	-90.23	0.300	9.18	-3.95	178.64	143.37	290.34	237.45 243.06
H 26 14	4.980	8.86	-4.48	463.19	374.77	-88.80	-102.50	0.381	6.24	-3.26	182.46	139.03	281.27	235.75
H 27 14	4.448 8.509	8.05 9.52	-15.74	465.97 438.30	3/4.03	-85.10	-102.82	0.383	5.60 8.08	-6.12	190.43	149.40	279.85	236.26 233.26
Н 29 2	3.100	18.95	-25.76	550.92	428.60	-78.35	-111.75	0.333	19.12	-24.36	232.81	159.06	321.14	269.54
H 30 22	2.787 2 012	19.03 15.18	-25.69	549.09	416.55	-78.18	-111.75	0.317	19.79 13.90	-23.61	234.17	154.02	320.16	262.53
H 32 8	8.917	14.54	-11.91	552.72	420.00 397.81	-78.67	-104.80	0.356	14.61	-19.29	232.59	149.52	320.14	248.30
Н 33 (6.289	10.08	-4.73	441.21	384.47	-73.09	-98.76	0.443	8.53	-6.17	172.35	147.80	268.86	228.78
H 34 2. H 35 18	3.000 8.461	9.47 9.75	-23.20	498.60 500.37	384.30	-87.92	-99.94	0.374	6.36 6.52	-15.55	204.59	145.05	294.02 294.74	238.59 231.11
Н 36 18	8.392	9.64	-6.06	502.36	382.30	-80.87	-97.20	0.382	8.17	-12.01	206.73	145.23	295.62	237.07
H 37 24	4.578 7.255	3.25 2.55	-31.68 -34 54	487.58 495.64	370.62	-99.57	-109.64	0.393	3.95	-22.88	192.71 196.50	133.07 130.27	294.87 299.14	237.54 236.79
н 39 2	1.194	2.66	-35.54	490.73	358.95	-87.35	-108.59	0.375	2.69	-25.26	194.18	130.18	296.55	226.34
Total	402.	.899												
<> Stat (A.	iona: Jakok	ry poi pi, H.	nts or Mause	n the n er and	molecu T. Cl	lar s ark,	urface J. Mol	. Mode	1., 20	008, 1	4, 547	7-558)		
	х		У		Z		value							
<> -2. 1.	9 ME 0942 9307	EP Max -	ima 1.9102 2.6574	: 2 1	1.995 -1.906	7	14.49 10.08							

Para	iSurf [™] outpu	ut for trimethop	orim, 1 , usi	ng a sphe	rical-harmonic surface
	4.2002	2.2888	-1.9834	9.694	
	2.3854	4.1407	4.8110	19.03	
	1.4638	5.7587	5.4768	12.76	
	-1.4292	-1.7903	3.3076	15.18	
	-0.1036	3.5081	-2.4659	9.520	
	-4.5243	-1.3404	-0.6240	12.26	
	1.9418	3.3249	5.3086	17.29	
<>	5 MEP	Minima :			
	0.6146	5.8475	1.0368	-40.75	
	0.0000	-4.3477	-2.5240	-50.24	
	-1.4714	2.3729	4.3877	-39.65	
	0.8011	-3.6508	-3.4297	-45.17	
	2.6849	-2.2207	-2.9411	-38.38	
<>	7 IEL	Maxima :			
	-3.0426	-1.2047	2.7459	554.6	
	0.2652	-0.8162	2.3579	538.2	
	-0.1428	-1.3588	2.3664	539.8	
	-1.9645	-1.8861	2.7449	546.7	
	-0.9455	-1.8557	2.5130	543.5	
	2.1929	5.4999	5.4576	550.9	
	1.0590	5.7160	5.3689	550.8	
<>	4 IEL	Minima :			
	-1.3070	2.2638	4.5277	325.7	
	0.2228	-2.1196	-3.6914	325.8	
	-0.2633	1.6255	4.6957	332.6	
	0.9079	5.7325	1.0276	328.4	
<>	4 EAL	Maxima :			
	-2.9082	2.6186	2.2718	-34.09	
	-2.2331	4.3871	0.4313	-35.17	
	-1.0954	-2.0486	-3.3583	-31.90	
	0.4612	-0.8006	-3.6052	-29.19	
<>	8 EAL	Minima :			
	0.2957	-5.5121	-1.4811	-109.8	
	1.1122	-5.2323	-3.1054	-107.1	
	-0.9624	-0.1287	4.9079	-112.6	
	2.6860	-2.4185	0.9712	-106.7	
	3.1807	-3.6011	-3.0614	-109.3	
	4.1894	-2.5658	0.2149	-106.6	
	1 8617	2.7843	2 3982	-111.7	
	1.001/	0.2002	2.0002		
<>	1 Alpł	na(l) Maxima :			
	0.9079	5.7325	1.0276	1.508	
<>	43 Alph	na(l) Minima :			
	0.1941	-0.5973	3.5619	0.2183	
	-2.6409	-5.9315	0.0000	0.3148	
	U.UUUU _3 0001	-3.4366	-1 6000	0.3304	
	-3.0091 -3.0107	7 3303 7 3303	-1.0009 -2 2077	0.3040 0.3080	
	J.ZIJI 4 7631	-0 6017	-4 0285	0.3049 0 3007	
	2 0760	1 6769	0 7161	0.3541	
	-1 7867	4 6717	-1 3420	0 2992	
	-3.8321	1.4764	1,1019	0.3536	
	-3.3600	-0.9080	1.6252	0.2680	
	0.0000	-1.1114	3.2108	0.2167	
	-1.8684	-5.7502	-2.2127	0.3169	
	2.5579	-5.0050	1.5082	0.3071	
	1.3440	3.4789	-1.7415	0.3159	
	1.3550	2.3350	-2.7116	0.3271	
	-4.8886	-2.1766	0.0000	0.3252	
	3.1678	0.2909	-4.5678	0.2969	
	2.2364	1.3735	0.8283	0.3513	
	-2.4257	0.7858	4.4900	0.2262	
	-2.5222	-3.6775	1.4074	0.3005	
	0.1013	-3.7289	1.1773	0.3635	
	-1.7602	-5.9234	-1.3715	0.3158	
	-5.0212	-3.6481	0.5445	0.3364	
	-2.4804	-5.5710	-2.8511	U.J163	
	4.0480	-0.2121	U./1///	0.2940	

ParaSurf [™] outpu	it for trimet	hoprim, 1 , usin	ng a spherical-harmonic surface	
2.4150	5.0622	5.1801	0.2208	
3.0687	2.6190	-0.8974	0.3555	
-0.4681	4.4658	5.9019	0.2284	
4.6450	-3.9692	0.2672	0.3134	
4.4727	-3.4302	-1.7843	0.3238	
-4.8830	-1.8743	-1.9116	0.3160	
-3.9257	-0.7207	-2.0799	0.3159	
-3.3469	-3.7161	-3.8579	0.3006	
3.5219	-6.1001	-0.6180	0.3327	
3.0798	-4.7428	-3.2784	0.3042	
5.4842	-1.0144	-0.7349	0.2993	
5.7717	1.0662	-2.4400	0.3602	
1.2319	-3.0702	1.4575	0.3175	
2.0934	5.6781	2.0628	0.2653	
2,5350	4.8424	2,6989	0.2363	
2.0847	3.3491	4.9587	0.2218	
2,6336	4.8200	3.3408	0.2302	
0.3362	6.5479	2.7231	0.2359	
0.0002	0.01/0	2.,201		
<> 12 F(N)	Maxima	:		
-0.5388	-1.6584	2.0781	14.28	
1.1425	5.9891	5.1567	12.89	
-1.6504	-1.7170	3.4430	13.58	
0.3958	5.0471	6.0897	10.52	
2.1544	3.5134	4.9573	17.87	
-0.2643	0.4295	4.5982	11.43	
-1.4216	-0.3912	4.9110	11.92	
-0.0484	-1.0598	3.5334	13.59	
1.9418	3.3249	5.3086	18.56	
2.5160	4.5342	4.5738	14.91	
2.6836	5.1541	3.8995	18.03	
2.6861	5.2419	3.5888	18.51	
<> 13 F(N)	Minima	:		
-0.5249	1.6153	4.6665	-47.71	
-1.3070	2.2638	4.5277	-45.59	
2.8613	-2.0789	-2.9677	-31.34	
-3.4166	1.0124	2.5039	-26.32	
-0.7779	-4.8988	-0.4346	-30.95	
-1.2132	5.3511	4.2166	-21.65	
-0.6484	-4.9580	-1.1098	-31.96	
0.9079	5.7325	1.0276	-50.34	
0.0536	-4.2249	-2.7040	-41.20	
-0.0608	1.3324	4.4423	-48.59	
3.4584	-1.4319	0.1637	-12.76	
-0.6374	-4.8513	-1.5489	-33.03	
1.0472	-3.6236	-3.4753	-41.54	
<> ParaSurf us	ed	1.84 seconds	s CPU time	

Figure 14 ParaSurf[™] output for trimethoprim, 1, using a spherical-harmonic surface.

After printing the program options, ParaSurf19[™] prints the shift in coordinates of the centre and the RMSD fits for the surface requested by the **translate** option. For speed, these fits use a lower number of surface points than the full fits that follow and are only calculated up to order six.

ParaSurf19[™] then moves on to fit the calculated shrink-wrap surface at full resolution for each of the local properties. It lists the root-mean-square deviations (RMSDs) for the surface points as a function of the order of the spherical-harmonic expansion, first for the geometry of the surface and then for each of the five local properties. The RMSD values give an idea of how well each order of the spherical-harmonic expansion fits the calculated shrink-wrap surface or the relevant property. The highest order used by ParaSurf[™] is 15 for the surface itself and 20 for each property.

The descriptor table is then printed. For molecules with no surface areas with positive EA_L, $\sigma_{EA_{L+}}^2$ is set to zero. The descriptors are those described in **Table 1**.

The spherical-harmonic hybridization coefficients are then listed for the shape and the five local properties. The coefficients are listed by increasing I starting from zero. The standard rotationally invariant fingerprint (RIF) [**36**] is printed. Note that the individual RIF-values correspond to the square roots of the hybridization coefficients from the tables above and that the RIF definition has been expanded to include hybridization coefficients of the field normal to the surface (the last 13 elements).

The table of atomic surface properties is derived by first finding the atom that contributes most (according to a Coulson analysis) to the electron density for each surface point. The point is then assigned to this atom and the maxima and minima in the MEP, IE_L , EA_L and F_N as well as the mean local polarizability for the points assigned to each atom are calculated. Note that, because of the fitting procedure, the values reported in this table may contain spurious ones if the fitted surface comes particularly close to an atom (or does not approach it). This situation is generally recognisable from the RMSD values printed for the fit. The surface used to calculate the descriptors and atomic-surface properties is the fitted spherical-harmonic surface of order 15.

The maxima and minima of the local properties selected according to the criteria outlined in reference [32] are then listed. These points are defined by their Cartesian coordinates and the corresponding values of the local property. In this example, no significant maxima and minima were found for the field normal to the surface. Generally, more maxima and minima are found for isodensity surfaces than for spherical-harmonic ones.

3.6.2 For a marching-cube surface

Figure 15 shows the output for a calculation using the options **surf=cube** for trimethoprim.

ParaSurf [™] output for trimethoprim using a marching-cube surface.
<> ParaSurf'20, Revision 518 <> Copyright (c) 2006-2020 Cepos InSilico GmbH. All rights reserved.
<> Input = 02-trimethoprim_e.h5
<> Program options :
Using marching-cube isodensity surface Surface fitting turned off Using an isodensity surface contour Isodensity value = 0.7000E-02 electrons/Angstrom**3 Triangulation mesh = 0.20 Angstrom Using multipole electrostatics
<<>> Molecule 1 of 1 (molecule 1 of file 1) <<>>
<> AM1 calculation for Trimethoprim <> Number of triangles = 12958 <> Number of unique points : 6484

Par	aSurf [™] output for trim	etho	orim using	a marching-cube surface.
<>	Property ranges:			
	Density : 0.6667E	1-02 t	0.7293	3E-02
	IE(I) : 31: TA(I) - 110	0.25 t	.0 53	39.63
	EA(1) : -112 MED -64		.0 -2	20.09
	Alpha(l) : 0.2	2316 +	0 1.	5616
	Field(N) : -96	5.24 t	.0 6	52.75
<>	Descriptors :			
	Dipole moment		1 2/92	Debue
	Dipolar density	•	1.2492 4116E-02	Debye Ingstrom**-3
	Molecular pol.	:	31.2348	Angstrom**3
	Molecular weight	:	290.32	
	Globularity	:	0.6827	
	Total surface area	:	319.90	Angstrom**2
	Molecular volume	:	303.47	Angstrom**3
	Most positive MEP		28 40	kcal/mol
	Most negative MEP	:	-64.19	kcal/mol
	Mean +ve MEP	:	10.18	kcal/mol
	Mean -ve MEP	:	-19.04	kcal/mol
	Mean MEP	:	-3.76	kcal/mol
	MEP range	:	92.59	kcal/mol
	MEP +ve Variance	:	41.22	(kcal/mol)**2
	MEP -ve Variance	:	267.69	(kcal/mol)**2
	MEP total variance	:	308.91 0 1156	(kcal/mol)**2
	MEP balance parameter		35 7161	kcal/mol
	MEP skewness		-1.0386	
	MEP kurtosis	:	0.6461	
	Integral MEP	: -1	123.74	kcal.Angstrom**2/mol
	Mavimum TE(1)		539 63	kcal/mol
	Minimum TE(1)	:	313.25	kcal/mol
	Mean IE(1)	:	419.36	kcal/mol
	IE(1) range	:	226.38	kcal/mol
	IE(l) variance	:	1692.94	(kcal/mol)**2
	IE(1) skewness	:	0.5386	
	IE(l) kurtosis	:	-0.2650	
	Integral IE(1)	: 5	814.85	eV.Angstrom**2
	Maximum EA(l)	:	-20.09	kcal/mol
	Minimum EA(l)	:	-112.07	kcal/mol
	Mean +ve EA(1)	:	0.00	kcal/mol
	Mean -ve EA(1)	:	-86.90	kcal/mol
	Mean EA(1)	:	-86.90	kcal/mol
	EA(1) range	:	91.99	KCal/MOL (kapl/mol) **2
	EA(1) -ve variance	•	363 26	(kcal/mol)**2
	EA(1) total variance	:	363.26	(kcal/mol) **2
	EA(1) skewness	:	1.3467	· · · · · · · · · · · · · · · · · · ·
	EA(l) kurtosis	:	1.2533	
	Integral EA(l)	: -1	215.64	eV.Angstrom**2
	EA(l) balance param.	:	0.0000	
	Fraction pos. EA(1)	:	0.0000	$(= 0.00 \text{ Angstrom}^{*2})$
	Max. local Eneg.	:	231.46	kcal/mol
	Min. local Eneg.	:	108.12	kcal/mol
	Mean local Eneg.	:	166.23	kcal/mol
	Local Eneg. range	:	123.34	kcal/mol
	Local Eneg. variance	:	417.45	(kcal/mol)**2
	Local Eneg. skewness	:	0.33	
	Local Eneg. kurtosis	:	-0.11	
	integral local Eneg.	: 2	299.60	ev.Angstrom**2
	Max. local hardness	:	312.11	kcal/mol
	Min. local hardness	:	191.60	kcal/mol
	Mean local hardness	:	253.13	kcal/mol
	Local hard. range	:	120.51	kcal/mol
	Local hard, variance	:	610.65	(kcal/mol)**2

ParaSurf[™] output for trimethoprim using a marching-cube surface.

Local hard. skewness	:	0.1	10
Local hard. kurtosis	:	-0.2	25
Integral local Hard.	:	3515.24	eV.Angstrom**2
Maximum alpha(l)	:	1.562	Angstrom**3
Minimum alpha(l)	:	0.2316	Angstrom**3
Mean alpha(l)	:	0.6113	Angstrom**3
Alpha(l) range	:	1.330	Angstrom**3
Variance in alpha(l)	:	0.8351E-0	01 Angstrom**6
Alpha(l) skewness	:	0.710	07
Alpha(l) kurtosis	:	-0.63	49
Integral Alpha(l)	:	192.472	Angstrom**5
Maximum field normal	:	62.75 ko	cal/mol.Angstrom
Minimum field normal	:	-96.24 k	cal/mol.Angstrom
Mean field	:	-0.23 k	cal/mol.Angstrom
Field range	:	158.99 ko	cal/mol.Angstrom
Total field variance	:	526.62 (1	kcal/mol.Angstrom)**2
+ve field variance	:	70.61 (1	kcal/mol.Angstrom)**2
-ve field variance	:	606.06 (1	kcal/mol.Angstrom)**2
Field balance param.	:	0.09	
Field skew	:	2.30	
Field kurtosis	:	3.510	
Integral F(N)	:	12.10	kcal.Angstrom/mol
Integral F(N +ve)	:	2556.	kcal.Angstrom/mol
Integral F(N -ve)	:	-2544.	kcal.Angstrom/mol
Integral F(N)	:	5100.	kcal.Angstrom/mol

<> Atomic surface properties:

A	tan	Area	Μ	EP	IE	(1)	EA	(1)	mean	Fie	ld(N)	Ene	g(L)	Har	d(L)
			max	min	max	min	max	min	pol.	max	min	max	min	max	min
С	1	3.628	14.36	-27.86	491.90	425.81	-81.79	-98.36	0.728	10.90	-21.63	201.74	164.78	290.23	261.03
0	2	5.916	-16.56	-61.43	517.24	376.94	-65.77	-85.46	1.081	-0.63	-73.31	224.23	154.36	293.01	222.59
С	3	6.543	2.52	-44.59	505.87	359.24	-22.51	-87.03	0.908	9.74	-28.32	212.95	152.67	292.91	192.84
С	4	5.071	11.28	-15.58	481.98	357.83	-27.90	-103.87	0.838	-0.52	-18.30	197.80	149.38	286.25	192.95
С	5	2.732	0.37	-15.57	479.44	380.22	-39.06	-99.62	0.852	0.25	-18.11	196.15	156.54	285.33	209.84
С	6	0.626	2.60	-6.47	484.17	448.50	-90.52	-102.25	0.780	1.55	-11.13	194.32	174.57	289.86	273.93
С	7	3.870	-1.32	-16.66	471.15	352.65	-29.26	-97.15	0.914	7.92	-20.01	190.28	145.66	281.46	197.72
С	8	7.796	8.20	-30.02	485.08	370.25	-27.62	-100.42	0.837	9.28	-27.16	195.32	153.70	289.76	201.54
Ν	9	8.806	-6.66	-61.59	513.87	315.71	-68.03	-105.96	1.218	-0.07	-93.68	211.66	108.12	302.21	205.55
С	10	9.386	10.13	-33.67	532.32	394.08	-36.02	-99.28	0.895	16.99	-30.33	222.84	168.80	309.69	215.05
Ν	11	3.869	18.95	-40.21	524.02	373.67	-56.90	-87.01	0.926	12.79	-60.69	226.85	149.77	297.17	223.90
Ν	12	8.305	-7.21	-58.46	498.65	313.25	-67.56	-105.77	1.113	-3.47	-96.24	204.08	109.69	294.57	199.78
С	13	7.530	8.26	-31.02	529.29	376.89	-29.27	-100.93	0.882	15.91	-29.85	224.81	163.14	306.15	204.25
Ν	14	3.838	16.28	-39.23	517.42	374.79	-56.65	-89.91	0.938	14.21	-65.25	223.27	150.30	294.16	223.72
С	15	6.248	2.68	-15.28	471.81	356.14	-27.26	-91.64	0.830	3.88	-18.98	190.62	158.24	281.18	192.14
С	16	6.383	-1.57	-42.45	496.04	359.40	-20.09	-90.31	0.891	7.12	-26.84	208.39	158.52	288.30	191.60
0	17	4.296	-12.59	-52.42	517.64	379.70	-66.09	-94.13	0.982	-3.38	-66.08	222.63	148.06	295.01	223.52
С	18	3.761	13.44	-26.68	492.51	427.41	-76.63	-98.00	0.764	10.83	-30.04	205.59	164.86	290.65	261.70
С	19	5.802	-4.66	-53.11	525.34	337.63	-23.78	-96.19	0.962	-0.82	-42.43	222.17	142.15	303.16	194.10
0	20	5.833	-37.89	-64.19	524.46	358.59	-72.18	-95.73	1.097	9.42	-73.94	222.28	136.94	302.19	221.61
С	21	4.174	4.81	-44.62	496.47	412.70	-89.80	-111.13	0.767	18.82	-33.69	203.34	151.82	293.14	259.78
Η	22	13.726	13.63	-26.84	467.28	383.89	-84.51	-97.88	0.437	17.13	-5.26	189.41	145.18	277.87	238.71
Н	23	11.425	18.03	-5.90	480.26	382.09	-81.49	-95.68	0.406	10.64	-1.18	199.39	145.43	281.08	236.66
Н	24	11.767	16.82	-11.30	468.81	382.80	-74.54	-95.49	0.409	14.56	-3.07	193.33	145.38	278.40	237.42
Η	25	6.714	18.85	0.74	451.61	404.02	-79.06	-101.10	0.393	15.88	-4.63	179.23	153.85	274.45	241.61
Η	26	10.569	14.79	-4.34	469.04	375.30	-92.01	-102.56	0.417	11.06	-10.08	186.52	139.31	282.52	236.00
Н	27	9.904	13.28	-16.04	477.35	373.95	-90.70	-102.71	0.425	16.09	-10.22	192.16	137.74	287.79	236.20
Η	28	11.188	15.83	-24.20	453.60	393.02	-60.47	-100.68	0.430	19.11	-13.26	176.46	150.12	277.14	229.98
Η	29	12.550	28.33	-32.28	537.60	466.05	-73.98	-111.19	0.369	58.47	-39.57	231.46	177.46	312.11	278.43
Η	30	12.411	28.40	-28.13	538.81	465.52	-78.04	-111.21	0.350	62.75	-29.93	230.38	177.23	311.62	274.50
Η	31	12.656	26.34	-29.09	539.63	461.85	-75.56	-112.07	0.365	50.73	-25.86	230.86	174.91	309.89	278.19
Н	32	7.346	26.06	-11.11	539.28	414.96	-75.37	-106.38	0.393	32.98	-26.17	230.49	157.38	308.79	257.58
Η	33	6.884	15.97	-7.99	447.20	389.16	-77.36	-99.72	0.449	14.37	-12.95	175.63	148.82	271.86	237.06
Η	34	13.439	13.65	-25.50	466.68	384.50	-84.52	-96.80	0.423	15.59	-26.06	189.57	145.84	277.12	238.65
Η	35	11.737	15.14	-8.64	467.29	382.53	-72.63	-95.72	0.412	13.76	-0.45	189.52	145.25	277.77	237.28
Η	36	11.574	14.77	-5.75	474.05	382.02	-77.53	-96.16	0.421	12.79	-1.84	198.26	145.09	278.16	236.93
Н	37	13.436	5.48	-36.64	446.96	370.84	-97.14	-109.64	0.420	10.58	-16.67	174.65	133.20	273.49	237.61
Н	38	11.231	4.01	-36.90	446.85	365.62	-92.77	-109.08	0.437	12.37	-32.89	172.48	129.51	274.38	236.11
Н	39	13.163	4.36	-33.57	487.04	365.50	-85.30	-108.12	0.427	25.61	-10.58	200.87	130.36	286.17	235.13

ParaSurf20 Users' Manual

>	Stationary	points on th	ne molecula:	r surface			
	(A. Jakobi	, H. Mauser a	and T. Clark	k, J. Mol.	Model., 2008	, 14, 547-5	58)
	х	У	Z	value			
>	12 MEP	Maxima	:				
	4.4569	0.9397	-3.2567	13.65			
	-0.9431	3.5397	-2.9284	15.83			
	-5.1681	-4.1904	-2.2284	13.64			
	1.6569	1.8397	-2.5117	15.97			
	-4.4098	-1.6603	-1.4167	18.85			
	3.6569	0.7480	-0.8284	10.06			
	-3.3931	-0.3603	-0.2617	12.48			
	-0.7431	-0.4080	1 6034	11.70			
	1 2069	6 1397	2 4299	20.34			
	1.4402	4.9647	3.5716	28.33			
	1.2569	4.5504	3.9716	28.40			
:>	5 MEP	Minima	:				
	0.4819	-3.8270	-4.1784	-60.73			
	2.2837	-2.2603	-3.5284	-52.42			
	-0.4931	-4.2603	-3.2435	-64.19			
	0.2569	5.3397	0.0841	-61.59			
	-1.2431	1./39/	3.3/16	-58.46			
:>	10 IEL	Maxima	:				
	1.6861	-2.6103	-3.4141	525.3			
	-0.5431	-4.2436	-2.2284	524.5			
	-1.9431	-1.4603	1.3799	527.8			
	1.1569	4.5115	1.3716	519.8			
	-2./431	-1.2436	1.5/16	539.6			
	-2 4431	1 3215	2 5716	533 6			
	0.4569	2.5397	3.0716	521.5			
	-1.2931	3.3564	3.4049	533.1			
	0.6851	5.1397	4.0716	538.8			
<>	4 IEL	Minima	:				
	0.4569	5.2397	0.1466	316.6			
	0.0569	5.4397	0.1849	315.7			
	-1.4431	1.9155	3.3/16	313.3 212 2			
	-0.9398	1.0032	3.3/10	313.3			
<>	6 EAL	Maxima	:				
	-1.4714	-2.0603	-3.9284	-22.51			
	0.0069	-1.2270	-4.1284	-20.09			
	-2.5431	-0.8270	-3.5284	-2/.90 -25 10			
	-2.4931	-1.1103	-0.6284	-23.10 -27 62			
	-0.7431	-2.4270	-0.4784	-28.57			
:>	16 EAL	Minima	:				
	1.4619	-4.8103	-3.9284	-107.3			
	1.8319	-4.4936	-3.9284	-107.7			
	2.1569	-4.2603	-3.8284	-108.6			
	2.4569	-3.8603	-3.5784	-109.8			
	0.2736	-5.4853	-2.4284	-111.1			
	3.4369 1 5296	-2.1003	-1.3951 -0 5207	-105.6			
	-2.5931	-2.0003 -1 5603	-U.J284 N 2299	-107.4 -105 9			
	-1.0431	-1.0603	-0.0034	-106.4			
	-2.1431	-1.6436	0.3716	-106.0			
	0.8569	2.9397	0.2716	-106.0			
	0.2569	5.3397	0.8216	-105.7			
	0.4402	1.7397	1.3466	-105.8			
	1.2569	5.9397	1.9558	-111.2			
	-1.7598	-0.3603	3.3716	-112.1			

ParaS	urf [™] outp	ut for trimet	noprim usi	ng a march	ing-cube surf	ace.	
-	-0.7431	-3.7603	-3.4784	1.337	-		
-	-0.8648	-3.8603	-3.2784	1.368			
	0.3370	5.3397	0.4216	1.562			
<>	55 Alpha	a(l) Minima	:	0 0175			
	2.0569	0.1397	-4.9284	0.31/5			
_	-3.8514	-3.4603	-4.3284	0.3187			
-	-3.3981	-3.2603	-4.3284	0.3178			
	4.1569	-0.6936	-4.4284	0.3229			
	2.1402	-5.0603	-3.9284	0.3182			
	4.8069	0.5397	-3.4284	0.3793			
_	-2.3931 -2 7/31	1.5347	-3.7284	0.3308			
-	-1.1431	2.0480	-3.5284	0.3533			
	1.4319	1.7230	-3.3917	0.3386			
-	-3.0955	-5.4603	-3.3784	0.3364			
	3.0569	-5.0603	-3.3284	0.3311			
-	-5.1431	-2.7603	-3.2151	0.3365			
_	-3 1264	2 1647	-3 2284	0.3354			
-	-2.7431	-5.6436	-2.8534	0.3354			
	3.4569	-3.3103	-2.6284	0.3428			
-	-4.3431	-1.7103	-2.7501	0.3453			
	4.9569	0.1623	-2.5784	0.3592			
-	-0.2598	3.1397	-2.7284	0.3383			
-	3 0569	-5 7603	-2.2344	0.3334			
-	-4.1431	-1.0103	-2.5284	0.3414			
	4.6569	-0.9802	-2.2284	0.3181			
	0.0902	3.3397	-2.5784	0.3334			
-	-1.8431	4.3579	-2.2284	0.3197			
_	2.0652	-6.2603	-1.8284	0.3638			
_	-4.4199	-5.4603	-1.4284	0.3687			
	2.1069	1.7397	-1.6284	0.3606			
-	-3.9064	-5.5603	-1.2284	0.3494			
-	-0.3431	-4.9603	-1.1117	0.3570			
-	-4.8931	-2.4603	-1.0284	0.3427			
_	1.6569	1.1897 -4 2153	-1.0284	0.3527			
	3.1361	-3.5493	-0.6284	0.3377			
	3.1319	-0.0603	-0.6284	0.3093			
	1.3402	-5.6603	-0.4284	0.3539			
-	-3.9431	1.5340	-0.3284	0.3551			
	1.6402 2.5021	-4.4353	0.1716	0.3238			
_	-3.2931	-3.6603	0.0716	0.3171			
-	-1.2988	-1.3603	0.5341	0.2578			
-	-0.7431	-0.4686	0.3716	0.3956			
	1.7569	4.9397	2.0883	0.2452			
	0.0569	6.0897	1.9383	0.2528			
-	0.8431	-0.6603	2.4216	0.2322			
-	-2.6431	0.3590	3.1716	0.2427			
	1.6569	4.8680	3.2591	0.2709			
	1.5569	5.1897	3.3716	0.2610			
	1.2569	3.2397	3.8166	0.2316			
-	-0.7431	4.0397	4.5/16	0.2467			
	J. 12JU	1.0001	1.0/10	0.2000			
<>	24 F(N)	Maxima	:				
	1.1569	-0.0803	-4.2284	13.42			
-	-2./431 4 9569	-2.6936 -0 4404	-3.9284 -3.8034	13.9U 13 9/			
-	-2.2181	2.5397	-3.6284	10.92			
	2.4902	-2.8103	-3.1284	10.39			
	3.9402	-1.7603	-3.2534	14.08			
-	-4.3431	-5.8436	-2.6284	13.93			
-	-∠.७43⊥ -0 9764	-3.66U3 4 3897	-2.6117 -2.7284	14.21 18 67			
-	1.2569	2.0897	-1.7901	14.21			

ParaSu	rf [™] outp	ut for trim	ethoprim usin	ig a marching-cube surface.	
-0.	.4431	-4.3770	-1.6284	22.71	
-4	.2931	-1.0603	-1.0284	15.71	
2.	.0069	0.7397	-0.7284	12.23	
-4	.7431	-2.8561	-0.3284	10.20	
-3.	.6431	0.8897	-0.0284	13.70	
-1.	.6931	-1.5603	0.6499	31.72	
0 .	.4569	2.3397	0.6216	11.69	
-2	.1264	3.5397	1.1716	15.99	
0 .	.8152	5.2897	1.2716	44.57	
1.	.6069	5.7397	2.3716	34.28	
-1.	.7014	-1.1603	2.7716	31.94	
-1.	.2931	0.5397	3.0716	40.68	
-0.	.3681	2.5564	3.5716	43.03	
0.	.8569	3.3305	4.5216	33.44	
<>	18 F(N)	Minima	:		
-0.	.0157	-4.2603	-3.8284	-72.02	
0.	.7684	-3.6603	-4.2117	-72.08	
1.	.1402	-3.5220	-4.1284	-72.46	
2.	.4911	-2.2603	-3.4284	-64.97	
-2	.5431	-0.8270	-3.5284	-15.72	
-0.	.5931	0.5397	-3.7284	-15.82	
-1.	.5163	-4.6603	-2.8284	-63.54	
3.	.0402	-2.0853	-2.2284	-58.40	
2.	.8569	-2.0103	-1.8284	-58.49	
-1.	.5149	-4.6103	-1.4284	-70.06	
-1	.5431	-2.0103	-0.2284	-16.71	
-0.	.0014	-0.0603	-0.2784	-18.82	
0 .	.3569	1.5897	-0.1951	-16.03	
-3.	.0931	2.7397	-0.1701	-19.32	
0 .	.2569	5.3397	0.0841	-92.42	
-3	.6098	0.5657	1.1716	-63.49	
-0.	.9598	1.6632	3.3716	-95.20	
-1	.3431	4.9397	3.1958	-59.08	
<> Para	aSurf us	ed	1.47 seconds	CPU time	

Figure 15 ParaSurf[™] output for trimethoprim using a marching-cube surface.

The table of RMSD values is no longer printed and the range of the electron-density values for the surface points (a test for the quality of the surface) is closer to the target isodensity value (in this case 0.007 e⁻Å⁻³) than for the fitted surface. The internal precision used by the program is \pm 2% of the target isodensity value. The values of the descriptors and the atomic-surface properties are more consistent using the marching-cube surface and are recommended for QSPR and surface-integral applications.

3.6.3 For a job with Shannon entropy

Figure 16 and **Figure 17** show the relevant sections of the output for a calculation using the options surf=cube for trimethoprim with the extra shannon option, which requests internal and external Shannon entropies using the default statistical background file from the PARASURF_ROOT directory. The output is identical to that shown in **Figure 15** except that an additional Shannon entropy block is printed after the descriptors, as shown in **Figure 16**:

		internal	external	
Maximum Shannon H	:	0.4229	0.3305	bits Angstrom**-2
Minimum Shannon H	:	0.0464	0.1296	bits Angstrom**-2
Mean Shannon H	:	0.2126	0.2186	bits Angstrom**-2
Variance Shannon H	:	0.0073	0.0013	bits Angstrom**-2
Molecular Shannon H	:	68.76	69.98	bits

Figure 16 Shannon entropy section of the ParaSurf[™] output for trimethoprim, 1, using a marching-cube isodensity surface.

If the statistical background file is not found or does not have the correct format, only the "internal" Shannon entropy appears in this table. "Internal" Shannon entropy is calculated using the statistical distribution of the local properties on the surface of the molecule itself as reference, whereas "external" Shannon entropy uses pre-calculated background statistics from a database of drug-like ligands. [43]

Note that external statistics files are only provided for the AM1 Hamiltonian.

The Shannon entropy is also analyzed based on the surfaces assigned to the individual atoms to give the table shown in **Figure 17**:

Shannon entropy section of the ParaSurf[™] output for trimethoprim, 1, using a marchingcube isodensity surface

	Shannon-entropy analysis :									
						Shannon	Entropy			
				Inte	rnal		1 1	Exte	rnal	
i	Atom	Area	max	min	mean	total	max	min	mean	total
С	1	3.633	0.2135	0.1191	0.1784	0.6481	0.2589	0.1902	0.2189	0.7952
0	2	5.872	0.1466	0.0545	0.1120	0.6577	0.2334	0.1350	0.1985	1.1656
С	3	6.547	0.1954	0.0744	0.1383	0.9054	0.2881	0.1481	0.2100	1.3751
С	4	5.042	0.2322	0.0982	0.1639	0.8263	0.3080	0.1634	0.2373	1.1966
С	5	2.637	0.2285	0.1216	0.1634	0.4307	0.3065	0.1978	0.2332	0.6148
С	6	0.736	0.2277	0.1525	0.1854	0.1365	0.2571	0.2264	0.2415	0.1778
С	7	3.866	0.2273	0.0856	0.1503	0.5810	0.3133	0.1582	0.2203	0.8519
С	8	7.747	0.2071	0.1233	0.1623	1.2570	0.3041	0.1672	0.2325	1.8010
Ν	9	8.821	0.2147	0.0555	0.1166	1.0287	0.2639	0.1375	0.1943	1.7138
С	10	9.463	0.1988	0.0877	0.1453	1.3751	0.2781	0.1468	0.2087	1.9747
Ν	11	3.906	0.1953	0.1013	0.1297	0.5068	0.2528	0.1556	0.2101	0.8209
Ν	12	8.304	0.1955	0.0595	0.1193	0.9905	0.2588	0.1461	0.1960	1.6276
С	13	7.528	0.1900	0.0922	0.1460	1.0993	0.2746	0.1488	0.2095	1.5768
Ν	14	3.839	0.1935	0.0971	0.1296	0.4974	0.2418	0.1475	0.2131	0.8181
С	15	6.243	0.2357	0.1006	0.1504	0.9391	0.3079	0.1690	0.2229	1.3916
С	16	6.375	0.2046	0.0788	0.1425	0.9084	0.2821	0.1543	0.2052	1.3081
0	17	4.315	0.2239	0.0690	0.1249	0.5389	0.2435	0.1566	0.2072	0.8941
С	18	3.756	0.2255	0.1233	0.1845	0.6931	0.2578	0.1917	0.2224	0.8355
С	19	5.797	0.2178	0.0676	0.1214	0.7038	0.2909	0.1307	0.1970	1.1422
0	20	5.835	0.1675	0.0587	0.1190	0.6945	0.2434	0.1609	0.2143	1.2503
С	21	4.118	0.2069	0.1260	0.1528	0.6292	0.2498	0.1553	0.1911	0.7870
Н	22	13.548	0.3922	0.1129	0.2909	3.9414	0.2870	0.1983	0.2393	3.2424
Н	23	11.587	0.3890	0.1496	0.3034	3.5158	0.2795	0.1795	0.2357	2.7315

ParaSurf20 Users' Manual

Shar	Shannon entropy section of the ParaSurf [™] output for trimethoprim, 1, using a marching-									
cube	e isod	density s	surface							
Н	24	11.815	0.4071	0.1264	0.3175	3.7516	0.3038	0.1826	0.2457	2.9026
Н	25	6.767	0.3387	0.1741	0.2669	1.8066	0.3114	0.1730	0.2048	1.3856
Н	26	10.613	0.3405	0.1561	0.2671	2.8346	0.2673	0.2038	0.2373	2.5183
Н	27	9.786	0.3281	0.1500	0.2615	2.5588	0.2760	0.1891	0.2388	2.3368
Н	28	11.191	0.4103	0.1267	0.3037	3.3982	0.3079	0.1736	0.2416	2.7035
Н	29	12.557	0.2481	0.1108	0.1692	2.1243	0.2587	0.1401	0.1736	2.1795
Н	30	12.354	0.2736	0.1009	0.1649	2.0367	0.2564	0.1392	0.1724	2.1301
Н	31	12.658	0.2601	0.0908	0.1631	2.0650	0.2512	0.1390	0.1741	2.2040
Н	32	7.359	0.2899	0.0994	0.1792	1.3188	0.2651	0.1393	0.1795	1.3214
Н	33	6.884	0.3384	0.1664	0.2591	1.7834	0.3096	0.1834	0.2267	1.5607
Н	34	13.443	0.4137	0.1221	0.3069	4.1249	0.2824	0.1974	0.2386	3.2078
Н	35	11.745	0.4136	0.1311	0.3171	3.7246	0.3046	0.1880	0.2443	2.8692
Н	36	11.570	0.3938	0.1278	0.3115	3.6039	0.3041	0.1868	0.2443	2.8270
Н	37	13.434	0.3376	0.1440	0.2558	3.4362	0.2668	0.1668	0.2349	3.1552
Н	38	11.343	0.3255	0.1204	0.2391	2.7124	0.2671	0.1680	0.2312	2.6222
Н	39	13.105	0.3345	0.1122	0.2579	3.3800	0.2850	0.1639	0.2382	3.1220

Figure 17 Shannon entropy section of the ParaSurf[™] output for trimethoprim, 1, using a marching-cube isodensity surface.

3.6.4 For a job with autocorrelation similarity

In order to calculate, for instance, the autocorrelation similarities between captopril and trimethoprim, first calculate the reference compound (in this case captopril) and request that the autocorrelation functions be written to the ParaSurf[™] SDF-output file:

parasurf captopril surf=cube autocorr

Then calculate the autocorrelations for trimethoprim and their similarities to those of captopril:

parasurf trimethoprim surf=cube autocorr=captopril p.sdf

This leads to the following additional output (Figure 18) from ParaSurf[™]:

Similarity o	Similarity output using autocorrelation functions								
<> Surface	<> Surface Autocorrelation vectors written to the SD-File								
<> Calcula <> Lead mo	<> Calculating autocorrelation similarities to captopril_p.sdf <> Lead molecule = Captopril								
<> Individ	<pre>> Individual autocorrelation similarities;</pre>								
Shape 0.7833	MEP(tot) 0.6309	MEP(+-) 0.7873	MEP(++) 0.8122	MEP() 0.5133	IE(1) 0.9720	EA(1) 0.3303	Alpha(1) 0.9634		
<>		Total	autocorre	lation find	gerprint s:	imilarity	= 0.9716		

Figure 18 Similarity output using autocorrelation functions. The lead molecule is captopril, which is defined in captopril_p.sdf.

The "Total autocorrelation fingerprint similarity" refers to the shape, MEP(+-), MEP(++), MEP(--), IE(L), EA(L) and Alpha(L) autocorrelation functions (a total of 448 bins). It is, however dominated by IE(L) and EA(L) because their numerical values are far larger than the other autocorrelation functions.

3.7 ParaSurf[™] SDF-output

The SDF output file (a fixed-format file) contains additional blocks with the information generated by ParaSurf[™]. These are:

<ParaSurf OPTIONS>

The ParaSurf[™] OPTIONS block consists of one line giving the options used in the ParaSurf[™] calculation. These are:

```
<surface> <fit> <electrostatic model> <isodensity level> (a4,2x,a4,2x,a5,2x,f8.3)
```

Where the individual variables can be:

<surface> WRAP</surface>		Shrink-wrap surface	
	CUBE	Marching-cube surface	
<fit></fit>	NONE	No fitting, unsmoothed marching-cube surface	
ISO		Marching-cube surface corrected to \pm 2% of the	
		preset isodensity value	
	SPHH	Spherical-harmonic surface fit	
<pre><electrostatic model=""></electrostatic></pre>	NAOPC	NAO-PC electrostatics	
	MULTI	Multipole electrostatics	
<isodensity level=""></isodensity>	n.nn	The target isodensity value in e ⁻ Å- ³	
		The radius of the solvent probe used to	
<pre><solvent probe="" radius=""></solvent></pre>		calculate the SES or SAS	
		The mesh size used to triangulate the	
<triangulation mesh=""></triangulation>		Surface	

<MOLECULAR CENTERS>

The molecular centres block appears only for calculations that use spherical harmonic fits. It includes two lines of the form:

```
"Spherical harmonic center = ", 3f12.6
"Center of gravity = ", 3f12.6
```

These blocks give the x, y and z coordinates of the centre of the molecule used for the sphericalharmonic fit and the centre of gravity, respectively. These two centres are usually identical, but may be different if the centre of gravity lies outside the molecule (e.g. for U-shaped molecules).

<SPHERICAL HARMONIC>

The spherical harmonic fits are described in **<SPHERICAL_HARMONIC_....** blocks. These blocks all have the same format and vary only in the property described. Each block has the form:

Order = nn	("Order = ",i4)
$l(c_l^m)m = -l \text{ to } l$	(I5, 10f8.4/5x,10f8.4/5x,10f8.4/5x,10f8.4) (One set of coefficients each for 1 = 1 to 15)
RMSDs: 1, RMSD ¹ , RMSD ²	("RMSDs:") (i8, 2f12.8) (One line for each 1 for 1 = 1 to 15, where RMSD ¹ is the area-weighted RMSD and RMSD ² the simple RMSD)

There are six such blocks, indicated by the tags:

<pre><spherical_harmonic_surface></spherical_harmonic_surface></pre>	The fitted molecular surface (radial distances) in Ångstrom
<pre><spherical_harmonic_mep></spherical_harmonic_mep></pre>	The MEP values at the spherical-harmonic surface (1 = 20) in kcal mol ⁻¹
<spherical_harmonic_ie(1)></spherical_harmonic_ie(1)>	The IEL values at the spherical-harmonic surface (1 = 20) in kcal mol ⁻¹
<spherical_harmonic_ea(1)></spherical_harmonic_ea(1)>	The EAL values at the spherical-harmonic surface (1 = 20) in kcal mol 1
<spherical_harmonic_alpha(1)></spherical_harmonic_alpha(1)>	The α_L values at the spherical-harmonic surface (1 = 20) in kcal mol^1
<pre><spherical_harmonic_field(n)></spherical_harmonic_field(n)></pre>	The FN values at the spherical-harmonic surface ($I = 20$) in kcal mol-1 Å-1

<ParaSurf Descriptors>

The ParaSurf[™] descriptors block lists the calculated descriptors in the following groups:

Molecular:	μ , μ D, α , MW, G, A, VOL
	("Molecular ",5f10.4,2f10.2)
MEP:	V_{\max} , V_{\min} , $\overline{V_{+}}$, $\overline{V_{-}}$, \overline{V} , ΔV , σ_{+}^{2} , σ_{-}^{2} , σ_{Tot}^{2} , v , $\sigma_{tot}^{2}v$, γ_{1}^{V} , γ_{2}^{V} , \int_{V}
	("MEP ",7f10.2/10x, f10.2,5f10.4,2x,g12.6)
IE(I):	IE_{L}^{\max} , IE_{L}^{\min} , $\overline{IE_{L}}$, ΔIE_{L} , σ_{IE}^{2} , γ_{1}^{IE} , γ_{2}^{IE} , \int_{IE}
	("IE(1) ",5f10.2,2f10.4/12x,g12.6)
EA(I):	$EA_{L}^{\max}, EA_{L}^{\min}, \overline{EA_{L+}}, \overline{EA_{L-}}, \overline{EA_{L-}}, \overline{EA_{L}}, \Delta EA_{L}, \sigma_{EA+}^{2}, \sigma_{EA-}^{2}, \sigma_{EA}^{2}, \nu_{EA}, \delta A_{EA}^{+}, A_{EA}^{+}, \gamma_{1}^{EA}, \sigma_{EA}^{2}, \sigma_{EA}^$
	γ_2^{EA} , \int_{EA}
	("EA(1) ",7f10.2/2f10.2,2f10.4,f10.2,2f10.4/12x,g12.6)
Eneg(I):	$\chi_L^{ m max}$, $\chi_L^{ m min}$, χ_L , $\Delta\chi_L$, σ_χ^2 , γ_1^χ , γ_2^χ , \int_χ
	("Eneg(1) ",5f10.2,2f10.4/12x,g12.6)
Hard(I):	η_L^{\max} , η_L^{\min} , $\overline{\eta_L}$, $\Delta \eta_L$, σ_η^2 , γ_1^η , γ_2^η , \int_η
	("Hard(1) ",5f10.2,2f10.4/12x,g12.6)
Alpha(I):	α_L^{\max} , α_L^{\min} , $\overline{\alpha_L}$, $\Delta \alpha_L$, σ_{α}^2 , γ_1^{α} , γ_2^{α} , \int_{α}
	("Alpha(1) ",5f10.2,2f10.4/12x,g12.6)
F _N	F_{N}^{\max} , F_{N}^{\min} , $\overline{F_{N}}$, σ_{F}^{2} , σ_{F+}^{2} , σ_{F-}^{2} , ν_{F} , $\gamma_{1}^{F_{N}}$, $\gamma_{2}^{F_{N}}$, $\int_{F_{N}}$, \int_{+}^{+} , \int_{-}^{-} , $\int_{F_{N}}$
	("Field desc",7f10.4/" ",6f10.4)

Jobs that include Shannon entropy give two extra sets of descriptors:

r			
Shannon(i):	$H_{in}^{ ext{max}}$, $H_{in}^{ ext{min}}$, \overline{H}_{in} , $\sigma_{H_{in}}^2$, $igstyle _{H_{in}}$		
		("Shannon(i)	",4f10.4,f10.2,f10.4)
Shannon(e):	H_{ex}^{\max} , H_{ex}^{\min} , $\overline{H_{ex}}$, $\sigma_{H_{ex}}^2$, $\int_{H_{ex}}$		
		("Shannon (e)	",4f10.4,f10.2,f10.4)

For calculations using a spherical-harmonic fit, the hybridization coefficients are printed to the .sdf file as follows (tag line followed by as many lines with the coefficients as necessary):

<SHAPE HYBRIDS> <MEP HYBRIDS> <IE(L) HYBRIDS> <EA(L) HYBRIDS> <ALPHA(L) HYBRIDS> <FIELD(N) HYBRIDS>

(15	coefficients,	6f12.6)
(20	coefficients,	6f12.6
(20	coefficients,	6f12.2)
(20	coefficients,	6f12.2)
(20	coefficients,	6f12.8)
(20	coefficients,	6f12.4)

The hybridization coefficients are listed in order of increasing i from zero, exactly as in the output file.

The atomic surface properties are listed in the atomic order according to the following headings (tag line followed by as many lines with the surface properties as necessary):

<atomic areas="" surface=""></atomic>	Areas	(10f8.4)
<atomic maxima="" mep="" surface=""></atomic>	MEP maxima	(10f8.2)
<atomic mep="" minima="" surface=""></atomic>	MEP minima	(10f8.2)
<atomic ie(l)="" maxima="" surface=""></atomic>	IE(I) maxima	(10f8.2)
<atomic ie(l)="" minima="" surface=""></atomic>	IE(I) minima	(10f8.2)
<atomic ea(l)="" maxima="" surface=""></atomic>	EA(I) maxima	(10f8.2)
<atomic ea(l)="" minima="" surface=""></atomic>	EA(I) minima	(10f8.2)
<atomic mean="" pol="" surface=""></atomic>	Mean pol.	(10f8.4)
<atomic (n)="" field="" maxima="" surface=""></atomic>	FN maxima	(10f8.2)
<atomic field(n)="" minima="" surface=""></atomic>	FN minima	(10f8.2)

The properties correspond exactly to those printed in the table of surface properties in the output file.

<PROPERTY MAXIMA and MINIMA>

The ParaSurf[™] block for the maxima and minima of the local properties is defined as follows for each property:

Header line	Number of maxima for the property:	
(maxima)	$N_{ m max}$, property (MEP, IEL, EAL or Alpha(L))	
		(I3,a," Maxima")
Nmax maxima	x, y, z, property value	
lines		(3f12.4,3x,g10.4)
Header line	Number of minima for the property:	
(minima)	$N_{ m max}$, property (MEP, IEL, EAL or Alpha(L))	
		(I3,a," Minima")
N _{min} minima	x, y, z, property value	
lines		(3f12.4,3x,g10.4)

<STANDARD RIF>

The rotationally invariant fingerprint [36] is printed as a list of 54 floating point numbers (6g12.6). The first 41 are those defined in reference [36] and the last 13 are the square roots of the hybridization coefficients for the normal field from l=0-12.

3.7.1 Optional blocks in the SDF-output file

A calculation including Shannon entropy gives two extra lines in the descriptors block of the SDFoutput file:

The maximum, minimum, mean, variance and total "internal" Shannon entropies.

	"Shannon ((i)) //
--	------------	-----	------

(4f10.4,f10.2,f10.4)

The maximum, minimum, mean, variance and total "external" Shannon entropies (if these are calculated).

"Shannon (e) "

Additionally, extra blocks for the atomic Shannon entropy-related variables are added to the SDFoutput after the other atomic-property blocks:

<pre><atomic (internal<="" h="" maximum="" pre="" surface=""></atomic></pre>)>
Maximum "internal" Shannon entropies	(10f8.4)
<atomic (internal<="" h="" minimum="" surface="" th=""><th>)></th></atomic>)>
Minimum (finternell) Obernen entrenies	

<pre><atomic (internal)="" h="" mean="" surface=""></atomic></pre>	
Mean "internal" Shannon entropies	(10f8.4)
<pre><atomic (internal)="" h="" surface="" total=""></atomic></pre>	•
Total "internal" Shannon entropies	(10f8.4)

If the external Shannon entropy is also calculated, the following blocks are also written:

<atomic (external<="" h="" maximum="" surface="" th=""><th>.)></th></atomic>	.)>
Maximum "external" Shannon entropies	(10f8.4)
<atomic (external<="" h="" minimum="" surface="" th=""><th>.)></th></atomic>	.)>
Minimum "external" Shannon entropies	(10f8.4)
<pre><atomic (external)="" h="" mean="" surface=""></atomic></pre>	
Mean "external" Shannon entropies	(10f8.4)
<pre><atomic (external)="" h="" surface="" total=""></atomic></pre>	
Total "external" Shannon entropies	(10f8.4)

For calculations that include surface autocorrelations, these are written in the following blocks:

<SURFACE AUTOCORRELATION PARAMETERS>

The number of autocorrelation points	("ncorr = ",i6)
The lower end of the autocorrelation range	("rmin = ",f10.6)
The bin size	("dcorr = ",f10.6)

This block then contains a table that gives all the autocorrelations as a table with the following headings:

Column heading	Contents
R	Reference distance (R in Equation (18))
shape	Shape autocorrelation
MEP(Tot)	Total MEP autocorrelation
MEP(+-)	MEP +/- autocorrelation
MEP(++)	MEP +/+ autocorrelation
MEP()	MEP -/- autocorrelation
IE(L)	IEL autocorrelation
EA(L)	EAL autocorrelation
Alpha(L)	Alpha(L) autocorrelation

 Table 7
 Column headings and definitions for autocorrelation tables.

The format of the columns is (f8.2,2x,8g15.6)

INPUT AND OUTPUT FILES

68

Calculations with spherical-harmonic fits that use the **TRANSLATE** or **TRANSLATE2** options, an additional block with the header

<TRANSLATED SPHERICAL HARMONIC FITS>

is printed. This block consists of nine sets of results (the original centre plus eight translated ones) for **TRANSLATE** and 16 for **TRANSLATE2**. The original centre is denoted by the header

Origin <shiftx><shifty><shiftz><RMSD> ("Origin :",3f12.4,f12.6)')

followed by the fitted coefficients (7f12.6). The shifted points are defined in the same way, but are denoted "Point N"

("Point ",i2,":",3f12.4,f12.6)

3.8 The surface (.psf) file

The .psf file can be used to derive properties and descriptors from the ParaSurf[™] results. It includes the coordinates and properties of the atoms, surface points and surface triangles in the following format. This format has been extended compared to that used by ParaSurf'11[™].

Number of atoms	(i6)	
One line per atom with the atomic surface properties:		
Atomic number, x-coordinate, y-coordinate, z-coordinate,		
atomic surface area, V _{max} , V _{min} , IE _L ^{min} , EA _L ^{max} ,		
mean polarizability	(i2,3f10.5,f8.3,4f8.2,f8.3)	
Number of surface points, total number (N _{models}) of surface- integral models (normal and binned)		
The three-letter codes for the individual models	N _{models} *(1x,a3)	
One line per point with the local properties:		
x-coordinate, y-coordinate, z-coordinate, MEP, IE _L , EA _L , α _L , (3f10.5, 3f8.2, f8.4, ie		
atom _L , local value of each model	(2x,g12.4))	
(where atom _L is the atom to which the surface point is assigned)		
Number of surface triangles (16)		
One line per triangle with the ID of the triangle and the local properties:		
point #1, point #2, point #3, area, atom _{tri-} normal field	(3i6.f10.5.i6.g12.4)	

(where point #1, 2 and 3 are the numbers of the surface points that make up the triangle and atom_{tri} is the atom to which the triangle is assigned)

3.9 Anonymous SD (.asd) files

The .asd file contains only those blocks from the ParaSurf[™] output SD file that do not pertain directly to the 2D-molecular structure. Its purpose is to allow a full descriptions of the intermolecular bonding properties of the molecule without revealing its structure. The .asd file can only be written from a ParaSurf[™] calculation using spherical-harmonic fitting. Its form is:

The SD header line	(A molecular ID number etc.)
The program identifier line	(The normal second line of the SD-file)

And the blocks defined by the following tags:

```
<SPHERICAL_HARMONIC_SURFACE>
<SPHERICAL_HARMONIC_MEP>
<SPHERICAL_HARMONIC_IE(1)>
<SPHERICAL_HARMONIC_EA(1)>
<SPHERICAL_HARMONIC_FIELD(N)>
<SPHERICAL_HARMONIC_ALPHA(1)>
<SHAPE HYBRIDS>
<MEP HYBRIDS>
<IE(L) HYBRIDS>
<EA(L) HYBRIDS>
<FIELD(N) HYBRIDS>
<ALPHA(L) HYBRIDS>
<STANDARD RIF>
```

<ParaSurf Descriptors>

(The molecular weight and the atomic surface properties are not included because they would allow the molecular formula to be reconstructed. The atoms assigned to each surface point or triangle are also not given.) The format of the descriptors is:

Molecular	μ , μ d, α , MW, G, A, VOL
moreourar	("Molecular ",5f10.4,2f10.2)
MEP	V_{\max} , V_{\min} , $\overline{V_+}$, \overline{V} , \overline{V} , ΔV , σ_+^2 , σ^2 , σ_{Tot}^2 , ν , $\sigma_{tot}^2 \nu$, γ_1^V , γ_2^V , \int_V
	("MEP ",7f10.2/10x, f10.2,5f10.4,2x,g12.6)
IE(I)	$I\!E_L^{ m max}$, $I\!E_L^{ m min}$, $\overline{I\!E_L}$, $\Delta I\!E_L$, $\sigma_{I\!E}^2$, $\gamma_1^{I\!E}$, $\gamma_2^{I\!E}$, $\int_{I\!E}$
	("IE(1) ",5f10.2,2f10.4/12x,g12.6)
	EA_L^{\max} , EA_L^{\min} , \overline{EA}_{L_+} , \overline{EA}_{L} , \overline{EA}_{L} , ΔEA_L , σ_{EA+}^2 , σ_{EA-}^2 , σ_{EA}^2 , v_{EA} , δA_{EA}^+ , A_{EA}^+ , γ_1^{EA} ,
EA(I)	γ_2^{EA}, \int_{EA}
	("EA(1) ",7f10.2/2f10.2,2f10.4,f10.2,2f10.4/12x,g12.6)

Eneq(I)	$\chi_L^{\text{max}}, \chi_L^{\text{min}}, \overline{\chi_L}, \Delta \chi_L, \sigma_{\chi}^2, \gamma_1^{\chi}, \gamma_2^{\chi}, \int_{\chi}$
L1109(1)	("Eneg(l) ",5f10.2,2f10.4/12x,g12.6)
Hard(I)	η_L^{\max} , η_L^{\min} , $\overline{\eta_L}$, $\Delta \eta_L$, σ_η^2 , γ_1^η , γ_2^η , \int_η
	("Hard(1) ",5f10.2,2f10.4/12x,g12.6)
Alpha(l)	α_L^{\max} , α_L^{\min} , $\overline{\alpha_L}$, $\Delta \alpha_L$, σ_{α}^2 , γ_1^{α} , γ_2^{α} , \int_{α}
	("Alpha(l) ",5f10.2,2f10.4/12x,g12.6)
F _N	F_N^{\max} , F_N^{\min} , ΔF_N , $\overline{F_N}$, σ_F^2 , $\sigma_{F^+}^2$, $\sigma_{F^-}^2$, v_F , $\gamma_1^{F_N}$, $\gamma_2^{F_N}$, $\int_{F_N}^+$, $\int_{F_N}^+$, $\int_{F_N}^-$
	("Field desc",7f10.4/" ",6f10.4)

Jobs that include Shannon entropy give two extra sets of descriptors:

Shannon(i)	$H_{in}^{ ext{max}}$, $H_{in}^{ ext{min}}$, $\overline{H_{in}}$, $\sigma_{H_{in}}^2$, $\int_{H_{in}}$	
•••••••••••••••••••••••••••••••••••••••	("Shannon(i) ",4f10.4,f10.2,f10.4)
Shannon(e)	$H_{ex}^{ ext{max}}$, $H_{ex}^{ ext{min}}$, $\overline{H_{ex}}$, $\sigma_{H_{ex}}^2$, $iggl_{H_{ex}}$	
	("Shannon (e) ",4f10.4,f10.2,f10.4)

3.9.1 Optional blocks

For calculations that include surface autocorrelations, these are written in the following blocks:

<SURFACE AUTOCORRELATION PARAMETERS>

The number of autocorrelation points	("nco:	rr = ",i6)
The lower end of the autocorrelation range	("rmin	= ",f10.6)
The bin size	("dcorr	= ",f10.6)

This block then contains a table that gives all the autocorrelations as a table with the following headings:

Column heading	Contents
R	Reference distance (R in Equation (18))
shape	Shape autocorrelation
MEP(Tot)	Total MEP autocorrelation
MEP(+-)	MEP +/- autocorrelation
MEP(++)	MEP +/+ autocorrelation
MEP()	MEP -/- autocorrelation
IE(L)	IEL autocorrelation
EA(L)	EAL autocorrelation
Alpha(L)	Alpha(L) autocorrelation

 Table 8
 Column headings and definitions for the autocorrelation table in the output SDF file.

The format of the columns is (f8.2,2x,8g15.6)

3.10 Grid calculations with ParaSurf™

3.10.1 User-specified Grid

The command

parasurf <filename> estat=multi grid=grid.dat

instructs ParaSurf[™] to read a set of Cartesian coordinates from the file grid.dat and to calculate the log₁₀ of the electron density, the four local properties, the electric field and the derivatives of the local properties (log(ρ), MEP (=V), IE(I), EA(I) Pol(I), Eneg(I), Hard(I), dV/dx, dV/dy, dV/dz, d ρ /dx, d ρ /dy, d ρ /dz, dlog(ρ)/dx, dlog(ρ)/dy, dlog(ρ)/dz, dIE(I)/dx, dIE(I)/dy, dIE(I)/dz, dEA(I)/dx, dEA(I)/dy, dEA(I)/dz, dEneg/dx, dEneg/dy, dEneg/dz, dHard/dx, dHard/dy, dHard/dz). The format of the file grid.dat (which must be in the same directory as the input) is one line per point containing the x, y and z coordinates in free format, comma-separated, maximum line length 80 with no trailing comma. For instance, the following grid file (Figure 19):

-8.01100 -8.01100 -8.01100 -8.01100 -8.01100 -8.01100 -8.01100 -8.01100 -8.01100 -8.01100	, , , , , , , , , ,	-13.72910 -13.72910 -13.72910 -13.72910 -13.72910 -13.72910 -13.72910 -13.72910 -13.72910 -13.72910	, , , , , , , , , ,	-7.91090 -6.91090 -5.91090 -4.91090 -3.91090 -2.91090 -1.91090 -0.91090 0.08910 1.08910	

Figure 19 Sample grid file

gives the output shown in Figure 20.

Calculating local properties using grid file grid.txt Using multipole electrostatics <> AM1 calculation for Trimethoprim y z log(rho) MEP IE(l) EA(l) Pol(l) Eneg(l) Hard(l) dv/dz dRho/dx dRho/dy dRho/dz dlogR/dx dlogR/dy dlogR/dz dIEl/dx dIEl/dy dEAl/dy dEAl/dz dEneg/dx dEneg/dy dEneg/dz dHard/dx dHard/dy dHard/dz Hard(1) dv/dx Х dv/dv dIE1/dz dEA1/dx -0.14 397.68 -93.93 0.4314 39E-22 7.432E-01 1.531E+00 9.523 -8.01100 -13.72910 -7.91090 -21.981311 -0.14 397.68 -93.93 0.4314 151.87 245.80 6.165 3.937E-04 -3.356E-02 1.787E-22 3.681E-22 2.289E-22 7.432E-01 1.531E+00 9.523E-01 -1.928E+00 2.32E 2.815E+00 4.315E-02 -5.509E-02 6.822E-02 -9.423E-01 1.137E+00 -1.374E+00 -9.855E-01 1.192E+00 -1.442E+00 245.80 6.165E-02 -2.328E+00 --8.01100 -13.72910 -6.91090 -21.096656 -0.10 395.21 -93.87 0.4454 150.67 244.54 6.241 9.348E-03 -4.102E-02 1.426E-21 2.938E-21 1.501E-21 7.739E-01 1.594E+00 8.142E-01 -1.870E+00 1.701 2.117E+00 4.256E-02 -4.129E-02 5.351E-02 -9.135E-01 8.301E-01 -1.032E+00 -9.561E-01 8.714E-01 -1.085E+00 244.54 6.241E-02 -701E+00 --8.01100 -13.72910 -5.91090 -20.358433 -0.05 393.44 -93.82 0.4572 149.81 243.63 6.127 2.024E-02 -4.705E-02 8.086E-21 1.666E-20 6.653E-21 8.016E-01 1.651E+00 6.595E-01 -1.826E+00 1.224 1.434E+00 4.188E-02 -3.019E-02 3.833E-02 -8.922E-01 5.971E-01 -6.979E-01 -9.341E-01 6.273E-01 -7.362E-01 243.63 6.127E-02 -1.224E+00 -8.01100 -13.72910 -4.91090 -19.782872 -0.01 392.34 -93.79 0.4658 149.27 243.07 3.235E-02 -5.068E-02 3.130E-20 6.447E-20 1.857E-20 8.245E-01 1.698E+00 4.89 01 4.140E-02 -2.211E-02 2.297E-02 -8.840E-01 4.362E-01 -3.686E-01 -9.254E-01 4.892E-01 -1.809E+00 8.945E-01 -7.602E-4E-01 4.583E-01 -3.916E-01 -93.78 0.4701 149.07 242.85 5.324E-02 -33E+00 3.061E-01 -1.830E+00 7.083E-01 -6.999E--3.91090 -19.384276 (95E-20 1.647E-19 2.910E-20 0.05 391. 0 8.412E-01 391.92 -8.01100 1.733E+00 -5.122E-02 4.454E-02 02 4.138E-02 -1.717E-02 7.305E-03 -8.942E-01 3.456E-01 -3.134E-02 -9.356E-01 3.628E-01 -3.865E-02 -2.91090 -19.173520 0.10 392.22 149.22 -8.01100 -13.72910 -93.78 0.4694 243.00 4.695E-02 -5.549E-02 -4.847E-02 1.313E-19 2.705E-19 1.766E-20 8.503E-01 1.751E+00 1.143E-01 -1.896E+00 6.70 01 4.197E-02 -1.549E-02 -9.132E-03 -9.269E-01 3.277E-01 3.348E-01 -9.688E-01 3.432E-01 3.439E-01 6.709E-01 6.788E--8.01100 -13.72910 -1.91090 -19.156717 0.14 393.32 -93.80 0.4634 149.76 243.56 3.983E-02 - 6.402E-02 -4.281E-02 1.366E-19 2.814E-19 -1.297E-20 8.511E-01 1.753E+00 -8.082E-02 -2.012E+00 8.029E-01 1.542E+00 4.320E-02 -1.731E-02 -2.699E-02 -9.846E-01 3.928E-01 7.576E-01 -1.028E+00 4.101E-01 7.846E-01 -8.01100 -13.72910 -0.91090 -19.334354 0.18 395.36 -93.83 0.4522 150.76 24 6.935E-02 -3.510E-02 8.993E-20 1.852E-19 -2.917E-20 8.434E-01 1.737E+00 -2.736E-01 -2.180E+00 1. 4.486E-02 -2.306E-02 -4.672E-02 -1.068E+00 5.618E-01 1.268E+00 -1.112E+00 5.849E-01 1.315E+00 150.76 244.60 3.246E-02 -1.147E+00 2.583E+00 -8.01100 -13.72910 0.08910 -19.701160 0.21 398.56 -93.89 0.4368 152.33 246.23 2.530E-02 -7.131E-02 -2.641E-02 3.793E-20 7.814E-20 -2.100E-20 8.279E-01 1.705E+00 -4.583E-01 -2.390E+00 1.765E+00 3.857E+00 4.646E-02 -3.306E-02 -6.811E-02 -1.172E+00 8.659E-01 1.895E+00 -1.218E+00 8.989E-01 1.963E+00 -8.01100 -13.72910 1.08910 -20.246709 0.23 403.16 -93.97 0.4182 154.60 248.57 1.868E-02 -7.022E-02 -1.770E-02 1.051E-20 2.166E-20 -8.224E-21 8.058E-01 1.660E+00 -6.304E-01 -2.622E+00 2.727E+00 5.387E+00 4.723E-02 -4.701E-02 -8.951E-02 -1.287E+00 1.340E+00 2.649E+00 -1.335E+00 1.387E+00 2.738E+00 <> ParaSurf used 0 15 seconds CPU time

Figure 20 Sample grid output file

The name and the extension (if any) of the grid file are free. Only the output file is written. The units of the local properties are those used in the normal output (i.e. V, IEL, and EAL in kcal mol⁻¹, α L in Ångstrom³.

3.10.2 Automatic grids

ParaSurf[™] can generate grids automatically for lead compounds in CoMFA[®]-like procedures. The **grid=auto** option generates a grid around the molecule (with a 0.5 Å margin around the positions of the atoms in each direction) and includes all points for which the electron density is lower than 10⁻² (i.e. for points outside the molecule). The spacing of the grid is set to a default value of 1.0 Å, but can be set to any value up to a maximum of 2.0 Å by the command-line argument **lattice=n.n**, which sets the lattice spacing to n.n Å. The grid thus generated is output (with the values of the local properties analogously to a calculation that uses a predefined grid and can be used for other molecules that have been aligned with the lead. An additional output file named <filename>_p.grid. There are two further variations of the automatic grid-generation procedure: **grid=auto** excludes any points that are within 0.5 Å of a nucleus, whereas **grid=vdw** excludes all grid points within the van der Waals volume of the molecule and **grid=box** calculates all points regardless of their proximity to a nucleus.

3.11 The SIM file format

SIM files must reside in the ParaSurf[™] executable directory and are strictly fixed format. SIM files must be called **<filename>.sim**, where **<filename>** must have exactly three characters. A sample SIM file for a single model (the free energy of solvation in octanol) is shown in **Figure 21**:

<pre>> <options> surf=cube fit=isod</options></pre>								
estat=multi								
iso=0.05								
> <models></models>								
1 3								
> <dgo></dgo>								
3 1.61	3 1.61058							
DeltaG(n-Oc	tan	ol)						
kcal/mol								
-0.01107	F	1.0	0.0	0.0	1.0	0.0	1.0	
1.6793d-9	F	1.0	0.0	3.0	0.0	0.0	1.0	
-2.0407d-10	Т	1.0	0.0	1.0	0.0	1.0	1.5	

Figure 21 Sample surface-integral model (SIM) file.

The first line, the OPTIONS tag, is compulsory and takes the form:

<OPTIONS>

The second to fifth lines, also compulsory in the order shown above, give the ParaSurf[™] options to be used for the surface-integral model. These options are given in lower case and override conflicting command-line options.

Line 6 must be the MODELS tag with the format

<MODELS>

Line 7 contains the two integers (**Nmodels** and **Maxterms**) that define the number of models given in the file and the maximum number of terms for any one model. The format is:

Nmodels	Maxterms	(214)
---------	----------	-------

The remainder of the SIM file consists of **Nmodels** blocks, each of which defines a single model and has the following format:

Model identifier tag

<MOD>

where MOD is a three-letter unique identifier for the model.

Nterms (the number of terms in the model), constant (the constant in the	
regression equation)	(i4,g12.6)
Model name (for output, maximum 20 characters)	(a20)

Units of the property P (for output, maximum 20 characters)	(a20)
Nterms lines, one per term, giving the definition of the model:	
Coeff Abs m n o p q r	(d12.6,13,6f8.4)

where each term is defined as:

$\left[MEP^{m} \cdot IE_{L}^{n} \cdot EA_{L}^{o} \cdot \alpha_{L}^{p} \cdot \eta_{L}^{q} \right]^{r} \text{ if Abs is false and } \left[\right]$	$MEP^m \cdot IE_L^n \cdot EA_L^o \cdot \alpha_L^p \cdot \eta_L^q \Big \Big]^r$ if Abs is true .
--	---

SIM files are only intended to be created by expert users.

3.12 Output tables

The command-line argument "table=<filename>" requests that the 41 descriptors written in the <ParaSurf DESCRIPTORS> block of the ParaSurf[™] SD-file output are written, one line per molecule, in the file <filename>. If <filename> already exists, the line for the new molecules will be appended, otherwise a new file will be created and a header line including designations of the descriptors will be written as the first line. All lines in the table file are comma-separated with all blanks (including those in the Molecule ID) removed. The Descriptors in order are:

Column Header	Symbol	Descriptor
MolID	Molecular I eliminated.	D taken from the first line of the entry for each molecule with all blanks
dipole	μ	Dipole moment
dipden	μо	Dipolar density
polarizability	α	Molecular electronic polarizability
MWt	MW	Molecular weight
globularity	G	Globularity
totalarea	А	Molecular surface area
volume	VOL	Molecular volume
MEPmax	V _{max}	Maximum (most positive) MEP
MEPmin	V _{min}	Minimum (most negative) MEP
meanMEP+	$\overline{V_{+}}$	Mean of the positive MEP values
meanMEP-	$\overline{V_{-}}$	Mean of the negative MEP values
meanMEP	\overline{V}	Mean of all MEP values
MEPrange	ΔV	MEP-range
MEPvar+	$\sigma_{\scriptscriptstyle +}^2$	Total variance in the positive MEP values
MEPvar-	$\sigma_{}^2$	Total variance in the negative MEP values
MEPvartot	$\sigma_{\scriptscriptstyle tot}^2$	Total variance in the MEP
MEPbalance	ν	MEP balance parameter
var*balance	$\sigma_{tot}^2 v$	Product of the total variance in the MEP and the balance parameter
MEPskew	γ_1^V	Skewness of the distribution of the MEP
MEPkurt	γ_2^V	Kurtosis of the distribution of the MEP
MEPint	\int_{V}	Integral of the MEP*area over the surface
IELmax	IE_L^{\max}	Maximum value of the local ionization energy
IELmin	IE_L^{\min}	Minimum value of the local ionization energy

 Table 9
 Definitions and order of the descriptors printed to the descriptor table if requested.

ParaSurf20 Users' Manual

Column Header	Symbol	Descriptor
IELbar	$\overline{IE_L}$	Mean value of the local ionization energy
IELrange	ΔIE_L	Range of the local ionization energy
IELvar	$\sigma^2_{\scriptscriptstyle I\!E}$	Variance in the local ionization energy
IELskew	γ_1^{IE}	Skewness of the distribution of IE(L)
IELkurt	γ_2^{IE}	Kurtosis of the distribution of IE(L)
IELint	\int_{IE}	Integral of the IE(L)*area over the surface
EALmax	EA_L^{\max}	Maximum of the local electron affinity
EALmin	EA_L^{\min}	Minimum of the local electron affinity
EALbar+	$\overline{EA_{L^+}}$	Mean of the positive values of the local electron affinity
EALbar-	$\overline{EA_{L-}}$	Mean of the negative values of the local electron affinity
EALbar	$\overline{EA_L}$	Mean value of the local electron affinity
EALrange	ΔEA_L	Range of the local electron affinity
EALvar+	$\sigma^2_{\scriptscriptstyle E\!A+}$	Variance in the local electron affinity for all positive values
EALvar-	$\sigma^2_{\scriptscriptstyle E\!A-}$	Variance in the local electron affinity for all negative values
EALvartot	$\sigma^2_{\scriptscriptstyle E\!Atot}$	Sum of the positive and negative variances in the local electron affinity
EALbalance	V_{EA}	Local electron affinity balance parameter
EALfraction+	$\delta A^{+}_{E\!A}$	Fraction of the surface area with positive local electron affinity
EALarea+	$\mathbf{A}_{E\!A}^{+}$	Surface area with positive local electron affinity
EALskew	γ_1^{EA}	Skewness of the distribution of the MEP
EALkurt	γ_2^{EA}	Kurtosis of the distribution of the MEP
EALint	\int_{EA}	Integral of the MEP*area over the surface
POLmax	α_L^{\max}	Maximum value of the local polarizability
POLmin	$lpha_{\scriptscriptstyle L}^{\scriptscriptstyle m min}$	Minimum value of the local polarizability
POLbar	$\overline{\alpha_{\scriptscriptstyle L}}$	Mean value of the local polarizability
POLrange	$\Delta \alpha_{L}$	Range of the local polarizability
POLvar	σ^2_{lpha}	Variance in the local polarizability
POLskew	γ_1^{lpha}	Skewness of the distribution of the local polarizability
POLkurt	γ_2^{lpha}	Kurtosis of the distribution of the local polarizability
POLint	\int_{α}	Integral of the $\alpha(L)^*$ area over the surface
ENEGmax	$\chi_L^{ m max}$	Maximum of the local electronegativity
ENEGmin	${\mathcal X}_L^{\min}$	Minimum of the local electronegativity
ENEGbar	$\overline{\chi_L}$	Mean value of the local electronegativity

ParaSurf20 Users' Manual

Column Header	Symbol	Descriptor
ENEGrange	$\Delta \chi_L$	Range of the local electronegativity
ENEGvar	σ_{χ}^{2}	Variance in the local electronegativity
ENEGskew	γ_1^{χ}	Skewness of the distribution of the local electronegativity
ENEGkurt	γ_2^{χ}	Kurtosis of the distribution of the local electronegativity
ENEGint	\int_{χ}	Integral of the $\chi(L)^*$ area over the surface
HARDmax	$\eta_{\scriptscriptstyle L}^{\scriptscriptstyle m max}$	Maximum of the local electronegativity
HARDmin	$\eta_{\scriptscriptstyle L}^{\scriptscriptstyle{ m min}}$	Minimum of the local electronegativity
HARDbar	$\overline{\eta_{\scriptscriptstyle L}}$	Mean value of the local electronegativity
HARDrange	$\Delta\eta_{\scriptscriptstyle L}$	Range of the local electronegativity
HARDvar	σ_η^2	Variance in the local electronegativity
HARDskew	γ_1^η	Skewness of the distribution of the local electronegativity
HARDkurt	γ_2^η	Kurtosis of the distribution of the local electronegativity
HARDint	\int_{η}	Integral of the $\chi(L)^*$ area over the surface
FNmax	F_N^{\max}	Maximum value of the field normal to the surface
FNmin	$F_N^{ m min}$	Minimum value of the field normal to the surface
FNrange	ΔF_{N}	Range of the field normal to the surface
FNmean	$\overline{F_{_N}}$	Mean value of the field normal to the surface
FNvartot	$\sigma_{\scriptscriptstyle F}^2$	Variance in field normal to the surface
FNvar+	$\sigma^2_{{\scriptscriptstyle F}{\scriptscriptstyle +}}$	Variance in the field normal to the surface for all positive values
FNvar-	$\sigma^2_{{\scriptscriptstyle F}{\scriptscriptstyle -}}$	Variance in the field normal to the surface for all negative values
FNbal	V_{F}	Normal field balance parameter
FNskew	$\gamma_1^{F_N}$	Skewness of the field normal to the surface
FNkurt	$\gamma_2^{F_N}$	Kurtosis of the field normal to the surface
FNint	\int_{F_N}	Integrated field normal to the surface over the surface
FN+	$\int_{F_N}^+$	Integrated field normal to the surface over the surface for all positive values
FN-	$\int_{F_N}^{-}$	Integrated field normal to the surface over the surface for all negative values
FNabs	$\int_{ F_N }$	Integrated absolute field normal to the surface over the surface

^aSymbols as used in Section **1.9**.

If the Shannon entropy is calculated, the following additional descriptors are added:

Column Header	Symbol	Descriptor
SHANImax	H_{in}^{\max}	Maximum internal Shannon entropy
SHANImin	${H}_{\scriptscriptstyle in}^{\rm min}$	Minimum internal Shannon entropy
SHANIvar	$\sigma^2_{{\scriptscriptstyle H}(in)}$	Variance of the internal Shannon entropy
SHANIbar	$ar{H}_{\scriptscriptstyle in}$	Mean internal Shannon entropy
SHANItot	$H_{\it in}^{{\it tot}}$	Total internal Shannon entropy
	and	if the external Shannon entropy is also calculated
SHANEmax	H_{ex}^{\max}	Maximum external Shannon entropy
SHANEmin	H_{ex}^{\min}	Minimum external Shannon entropy
SHANEvar	$\sigma^2_{H(ex)}$	Variance of the external Shannon entropy
SHANEbar	$ar{H}_{ex}$	Mean external Shannon entropy
SHANEtot	H_{ex}^{tot}	Total external Shannon entropy
SHANEtot	H_{ex}^{tot}	Total external Shannon entropy

Table 10 Additional descriptors (Shannon entropy)

3.13 Binned SIM descriptor tables

If the option "desfile=<filename>" is used, a user-defined file with binned SIM-descriptors is written. The bin limits are taken from installed models using the command-line option "desmodel=<code>", where <code> is the model code taken from Table 3Fehler! Verweisquelle konnte nicht gefunden werden. If the table file does not exist, a new one with a header line will be written, otherwise the results for the current molecule will be appended. The descriptors are denoted by a two- or three-letter code to denote the property followed by the number of the descriptor (currently 1-12). The letter codes are:

Code	Property	Code	Property	Code	Property
MEP	MEP	IEL	IE∟	EAL	EAL
POL	αι	FN	FN	HD	ղւ
ENG	χL	MI	MEP×IEL	MA	MEP×EAL
MP	MEP×αL	MF	$MEP{\times}F_{N}$	MH	MEP×η∟
ME	MEP×χL	IA	IEL×EAL	IP	IE _L ×α _L
IF	IE _L ×F _N	IH	IE _L ×η _L	IE	ΙΕ _L ×χ _L
AP	ΕΑι×αι	AF	EAL×FN	AH	ΕΑι×ηι
AE	EA _L ×χ _L	PF	$\alpha_L \times F_N$	РН	αι×ηι
PE	αι×χι	FH	F _N ×η∟	FE	Fn×χl
HE	ηι×χι				

Table 11 Letter codes (Binned SIM descriptor tables)

The descriptor file is comma-separated.

3.14 Autocorrelation fingerprint and similarity tables

If the option "aclist=<filename>" is used, a user-defined file with the autocorrelation fingerprint is written. If this file does not exist, it is created and the header line written, otherwise entries are appended. The ASCII file is comma-separated and contains the molecular identifier followed by 448 binned autocorrelation values in the order Shape, MEP(+-), MEP(++), MEP(--), IE(L), EA(L), Alpha(L) (64 bins each).

The option "aclist=<filename>" requests a user-defined file with the autocorrelation similarities to the lead compound defined using the "autocorr = <filename>" keyword. If this file does not exist, it is created and the header line written, otherwise entries are appended. The ASCII file is has a fixed format. The header line is

MolidShapeMEP(tot)MEP(+-)MEP(--)IE(1)EA(1)Alpha(1)Fingerprint

and the similarities are written in format (a20,9f10.4). If the molecular identifier is longer than 20 characters, it will be truncated. The "Fingerprint" similarity considers all 448 autocorrelation values (but see Section **0**.

3.15 Shared files

The Vhamil.par and SIM files are accessed in shared, read-only mode so that multiple ParaSurf[™] jobs can access the same files.

4 TIPS FOR USING PARASURF20[™]

4.1 Choice of surface

ParaSurf[™] was originally written to use isodensity surfaces. However, calculations that use a solventexcluded surface are very much faster than their equivalents with isodensity surfaces and will usually give comparable results. Surface-integral models may benefit from using a solvent-excluded surface with a solvent radius of 0.5-1.0 Å as this appears to be the most relevant surface for many physical properties. Surfaces fitted to spherical-harmonic expansions require more CPU-time than marchingcube surfaces but are essential for fast numerical applications such as ParaFit[™]. Again, solventexcluded shrink-wrap surfaces are faster to calculate than their isodensity equivalents.

4.2 Local properties

The improved local properties implemented in ParaSurf'12[™] generally give better QSAR and QSPR models than the earlier ones available up to ParaSurf'11[™]. It is therefore recommended that new projects use the ParaSurf'12[™] local properties.

4.3 QSAR using grids

As outlined in Section **3.10.2**, ParaSurf[™] can generate a grid for the lead molecule automatically that can then be used for a set of aligned (e.g. with ParaFit[™]) molecules for grid-based QSAR. This procedure has proven to be especially effective for test datasets, especially if the molecules are aligned to a common scaffold, as outlined in Section **1.1**

The automatic grid generated for a lead molecule is now written to the file **filename**, **p.grid** for use with the remainder of the dataset.

5 SUPPORT

5.1 Contact

Questions regarding ParaSurf[™] should be sent directly to:

support@ceposinsilico.com

5.2 Error reporting

Some of the routines in ParaSurf[™] may detect error conditions that have not yet been encountered in our tests. In this case, an error message will be printed requesting that the input and output files be sent to the programming team at the above e-mail address. We realize that this will not always be possible for confidentiality reasons, but if the details can be sent, we will be able to treat the exception and improve the program.

5.3 CEPOS InSilico GmbH

Waldstraße 25 90587 Obermichelbach Germany

support@ceposinsilico.comTel.+49-9131-9704910Fax.+49-9131-9704911

www.ceposinsilico.com/contact

6 LIST OF TABLES

Table 1	The descriptors calculated by ParaSurf [™]	16
Table 2	The 28 local properties and products thereof used to construct binned area descriptors.	23
Table 3	Local hydrophobicity models and their model codes (all models use the single CORINA-derived conformations and are trained with the "full" dataset	23
Table 4	ParaSurf [™] command-line options	31
Table 5	ParaSurf [™] input and output files	41
Table 6	Hamiltonians and the available electrostatic and polarizability models.	43
Table 7	Column headings and definitions for autocorrelation tables.	67
Table 8	Column headings and definitions for the autocorrelation table in the output SDF file.	71
Table 9	Definitions and order of the descriptors printed to the descriptor table if requested.	76
Table 10	Additional descriptors (Shannon entropy)	79
Table 11	Letter codes (Binned SIM descriptor tables)	80

7 LIST OF FIGURES

Figure 1	Marching-cube (left) and shrink-wrap (right, fitted to a spherical-harmonic approximation) isodensit surfaces calculated with ParaSurf [™] using the default settings	у 6
Figure 2	2D-representation of a solvent-excluded surface.	8
Figure 3	The solvent-accessible surface is obtained by rolling a spherical "solvent molecule".	8
Figure 4	2D-representation of a molecular surface with single-valued (A and B) and multiply valued (C and radial vectors from the centre.	D) 9
Figure 5	2D-representation of the shrink-wrap algorithm. The algorithms scans along the vector from point a towards the centre of the molecule until the electron density reaches the preset value (point b). The algorithm results in enclosures (marked yellow) for multi-valued radial vectors.	a ∋ 9
Figure 6	Spherical-harmonic approximation of a shrink-wrap isodensitiy surface. Note the areas where the surface does not follow the indentations of the molecule.	10
Figure 7	Schematic representation of the planes and hinge area used to determine the centre for spherical- harmonic expansions.	12
Figure 8	The eight autocorrelation functions calculated using the AM1 Hamiltonian for trimethoprim.	29
Figure 9	A sample <fragments> input block.</fragments>	37
Figure 10	The fragments defined in the SDF input example.	38
Figure 11	ParaSurf20 [™] output for the phenyl fragment defined above.	39
Figure 12	Surfaces calculated for the individual fragments, colour coded according to the MEP in kcal mol ⁻¹ . The fragments (clockwise from the top right) are methoxy1, methoxy2, methoxy3, thymine, phenyl and methylene.	40
Figure 13	The headers and titles, atomic coordinates and bond definitions from a VAMP .sdf file. The format follows the MDL definition. [26].	43
Figure 14	ParaSurf [™] output for trimethoprim, 1, using a spherical-harmonic surface.	54
Figure 15	ParaSurf [™] output for trimethoprim using a marching-cube surface.	60
Figure 16	Shannon entropy section of the ParaSurf [™] output for trimethoprim, 1, using a marching-cube isodensity surface.	61
Figure 17	Shannon entropy section of the ParaSurf [™] output for trimethoprim, 1, using a marching-cube isodensity surface.	62
Figure 18	Similarity output using autocorrelation functions. The lead molecule is captopril, which is defined in captopril_p.sdf.	า 62
Figure 19	Sample grid file	72
Figure 20	Sample grid output file	73
Figure 21	Sample surface-integral model (SIM) file.	74

8 REFERENCES

- [1] T. Clark, A. Alex, B. Beck, J. Chandrasekhar, P. Gedeck, A. H. C. Horn, M. Hutter, B. Martin, G. Rauhut, W. Sauer, T. Schindler, T. Steinke, VAMP 8.2, 2002, Erlangen. Available from Accelrys Inc., San Diego, USA (https://www.3dsbiovia.com/products/datasheets/vamp.pdf).
- J. J. P. Stewart, MOPAC2000, 1999, Fujitsu, Ltd, Tokyo, Japan. MOPAC 6.0 was once available as: J. J.
 P. Stewart, QCPE # 455, Quantum Chemistry Program Exchange, Bloomsville, Indiana, 1990.
- a) J. H. Van Drie. 'Shrink-wrap' surfaces: a new method for incorporating shape into pharmacophoric 3D database searching, *Journal of Chemical Information & Computer Sciences* 1997, *37*, 38-42; b) J. H. Van Drie, R. A. Nugent. Addressing the challenges of combinatorial chemistry: 3D databases, pharmacophore recognition and beyond, SAR and QSAR in Env. Res.1998, *9*, 1-21; c) J. Erickson, D. J. Neidhart, J. H. Van Drie, D. J. Kempf, X. C. Wang, D. W. Norbeck, J. J. Plattner, J. W. Rittenhouse, M. Turon, N. Wideburg, et al. Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease, *Science* 1990, *249*, 527-533
- [4] W. Heiden, T. Goetze, J. Brickmann. Fast generation of molecular surfaces from 3D data fields with an enhanced "marching cube" algorithm, *J. Comput. Chem.* **1993**, *14*, 246-250
- [5] D. W. Ritchie, G. J. L. Kemp. Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces, *J. Comput. Chem.* **1999**, *20*, 383
- [6] Chemical Applications of Atomic and Molecular Electrostatic Potentials. Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems, P. Politzer, D. G. Truhlar (Eds.), Plenum Press, New York, NY, 1981.
- [7] P. Sjoberg, J. S. Murray, T. Brinck, P. Politzer. Average local ionisation energies on the molecular surfaces of aromatic systems as guides to chemical reactivity, *Can. J. Chem.* **1990**, *68*, 1440-1443
- [8] B. Ehresmann, B. Martin, A. H. Horn, T. Clark. Local molecular properties and their use in predicting reactivity, *Journal of Molecular Modeling* **2003**, *9*, 342-347. doi:10.1007/s00894-003-0153-x
- [9] B. Ehresmann, M. J. de Groot, A. Alex, T. Clark. New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them, *J Chem Inf Comput Sci* 2004, 44, 658-668. doi:10.1021/ci034215e
- [10] B. Ehresmann, M. J. de Groot, T. Clark. Surface-integral QSPR models: local energy properties, J Chem Inf Model 2005, 45, 1053-1060. doi:10.1021/ci050025n
- [11] L. M. Loew, W. R. MacArthur. A molecular orbital study of monomeric metaphosphate. Density surfaces of frontier orbitals as a tool in assessing reactivity, *J. Am. Chem. Soc.* **1977**, *99*, 1019-1025
- [12] B. S. Duncan, A. J. Olson. Approximation and visualization of large-scale motion of protein surfaces, J Mol Graph 1995, 13, 250-257
- [13] J. H. Lin, T. Clark. An analytical, variable resolution, complete description of static molecules and their intermolecular binding properties, *J Chem Inf Model* **2005**, *45*, 1010-1016. doi:10.1021/ci050059v
- a) G. Rauhut, T. Clark. Multicenter Point Charge Model for High Quality Molecular Electrostatic Potentials from AM1 Calculations, *J. Comput. Chem.* **1993**, *14*, 503-509; b) B. Beck, G. Rauhut, T. Clark. The Natural Atomic Orbital Point Charge Model for PM3: Multipole Moments and Molecular Electrostatic Potentials, *J. Comput. Chem.* **1994**, *15*, 1064-1073
- a) M. J. S. Dewar, W. Thiel. MNDO, J. Am. Chem. Soc. 1977, 99, 4899-4907; 4907-4917; b) W. Thiel.
 MNDO, in *Encyclopedia of Computational Chemistry, Vol. 1*, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III, P. R. Schreiner (Eds.), Wiley, Chichester, 1998, p. 1599
- a) M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, *J Am Chem Soc* 1985, *107*, 3902-3909. doi:10.1021/ja00299a024; b) A. J. Holder. AM1, in *Encyclopedia of Computational Chemistry, Vol. 1*, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III, P. R. Schreiner (Eds.), Wiley, Chichester, 1998, pp. 8-11
- a) J. J. P. Stewart. Optimization of parameters for semiempirical methods I. Method, *Journal of Computational Chemistry* 1989, *10*, 209-220. doi:10.1002/jcc.540100208; b) J. J. P. Stewart.
 Optimization of parameters for semiempirical methods II. Applications, *Journal of Computational Chemistry* 1989, *10*, 221-264. doi:10.1002/jcc.540100209; c) J. J. Stewart. PM3, in *Encyclopedia of*

Computational Chemistry, Vol. 1, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III, P. R. Schreiner (Eds.), Wiley, Chichester, **1998**, pp. 2080-2086

- [18] P. Winget, A. C. Horn, C. Selçuki, B. Martin, T. Clark. AM1* parameters for phosphorus, sulfur and chlorine, *Journal of Molecular Modeling* **2003**, *9*, 408-414. doi:10.1007/s00894-003-0156-7
- a) W. Thiel, A. A. Voityuk. Extension of the MNDO formalism to d orbitals: integral approximations and preliminary numerical results, *Theor. Chim. Acta* 1992, *81*, 391-404; b) W. Thiel, A. A. Voityuk. Extension of MNDO to d orbitals: parameters and results for the silicon, *J. Mol. Struct.* 1994, *313*, 141-154; c) W. Thiel, A. A. Voityuk. Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group, *The Journal of Physical Chemistry* 1996, *100*, 616-626. doi:10.1021/jp9521480; d) W. Thiel, A. A. Voityuk. Extension of MNDO to d orbitals: parameters and results for the halogens, *Theor. Chim. Acta* 1996, *93*, 315-315; e) W. Thiel. MNDO/d, in *Encyclopedia of Computational Chemistry, Vol. 3*, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III, P. R. Schreiner (Eds.), Wiley, Chichester, 1998, pp. 1604-1606
- a) B. Martin, M. Gedeck, T. Clark. An Additive NDDO-Based Atomic Polarizability Model, Int. J. Quant. Chem. 2000, 77, 473-497; b) T. Clark. The local electron affinity for non-minimal basis sets, Journal of Molecular Modeling 2010, 16, 1231-1238. doi:10.1007/s00894-009-0607-x
- [21] A. H. C. Horn, J.-H. Lin, T. Clark. A Multipole Electrostatic Model for NDDO-based Semiempirical Molecular Orbital Methods, *Theor. Chem. Accts.* **2005**, *113*, 159-168
- [22] G. Schürer, M. Gedeck, M. Gottschalk, T. Clark. Accurate Parametrized Variational Calculations of the Molecular Electronic Polarizability by NDDO-Based Methods, J. Quant. Chem. 1999, 75, 17
- a) D. Rinaldi, J.-L. Rivail. Molecular polarizabilities and dielectric effect of the medium in the liquid state. Theoretical study of the water molecule and its dimers, *Theor. Chim. Acta* 1973, *32*, 57-57; b) D. Rinaldi, J.-L. Rivail. Calculation of molecular electronic polarizabilities. Comparison of different methods, *Theor. Chim. Acta* 1974, *32*, 243-251; c) J.-L. Rivail, D. Rinaldi. Variational calculation of multipole electric polarizabilities, *ComptesRendus, Serie B: Sciences Physiques* 1976, 283-283
- a) R. J. Abraham, B. D. Hudson, M. W. Kermode, J. R. Mines. A general calculation of molecular solvation energies, *Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases* 1988, *84*, 1911-1917. doi:10.1039/f19888401911; b) J. Tomasi, B. Mennucci, R. Cammi. Quantum mechanical continuum solvation models, *Chem Rev* 2005, *105*, 2999-3093. doi:10.1021/cr9904009
- [25] J. G. Cramer, G. R. Famini, A. H. Lowrey. Acc. Chem. Res. 1993, 26, 599-605
- [26] A. Y. Meyer. Chem. Soc. Rev. **1986**, *15*, 449-475
- [27] M. Wagener, J. Sadowski, J. Gasteiger. Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic A Receptor Activity by Neural Networks, J. Am. Chem. Soc. 1995, 117, 7769-7775
- [28] CORINA, Molecular Networks GmbH, Erlangen. https://www.mn-am.com/products/corina

[29] LogKOW dataset. http://www.tds-

- tds.com/c5/application/files/7314/7360/9080/LOGKOWFS2016e.pdf
- [30] C. E. Shannon, W. Weaver, *The Mathematical Theory of Communication*, University of Illinois Press, Chicago, **1949**.
- a) R. Wang, X. Fang, Y. Lu, S. Wang. The PDBbind database: collection of binding affinities for proteinligand complexes with known three-dimensional structures, *J Med Chem* 2004, *47*, 2977-2980. doi:10.1021/jm030580l; b) R. Wang, X. Fang, Y. Lu, C. Y. Yang, S. Wang. The PDBbind database: methodologies and updates, *J Med Chem* 2005, *48*, 4111-4119. doi:10.1021/jm048957q
- [32] L. Mavridis, B. D. Hudson, D. W. Ritchie. Toward high throughput 3D virtual screening using spherical harmonic surface representations, *J Chem Inf Model* **2007**, *47*, 1787-1796. doi:10.1021/ci7001507
- [33] A. J. Jakobi, H. Mauser, T. Clark. ParaFrag--an approach for surface-based similarity comparison of molecular fragments, *Journal of Molecular Modeling* 2008, 14, 547-558. doi:10.1007/s00894-008-0302-3
- a) M. Hennemann, T. Clark. A QSPR-approach to the estimation of the pK(HB) of six-membered nitrogen-heterocycles using quantum mechanically derived descriptors, *Journal of Molecular Modeling* 2002, *8*, 95-101. doi:10.1007/s00894-002-0075-z; b) M. Hennemann, A. Friedl, M. Lobell, J. Keldenich, A. Hillisch, T. Clark, A. H. Goller. CypScore: Quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory, *ChemMedChem* 2009, *4*, 657-669. doi:10.1002/cmdc.200800384
- [35] M. Connelly. The molecular surface package, J. Mol. Graph. **1992**, *11*, 139-141

- [36] A. Bondi. van der Waals Volumes and Radii, J. Phys. Chem. 1964, 68, 441-451
- [37] CTFile Formats. https://www.daylight.com/meetings/mug05/Kappler/ctfile.pdf
- [38] W. Thiel. The MNDOC method, a correlated version of the MNDO model, J. Am. Chem. Soc. **1981**, *103*, 1413-1420
- [39] G. B. Rocha, R. O. Freire, A. M. Simas, J. J. P. Stewart. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I, *Journal of Computational Chemistry* 2006, 27, 1101-1111. doi:10.1002/jcc.20425
- [40] J. J. P. Stewart. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements, *Journal of molecular modeling* 2007, *13*, 1173-1213. doi:10.1007/s00894-007-0233-4
- [41] H. B. Thomas, M. Hennemann, P. Kibies, F. Hoffgaard, S. Gussregen, G. Hessler, S. M. Kast, T. Clark. The hpCADD NDDO Hamiltonian: Parametrization, *J Chem Inf Model* 2017, *57*, 1907-1922. doi:10.1021/acs.jcim.7b00080
- [42] a) M. Kriebel, K. Weber, T. Clark. A Feynman dispersion correction: a proof of principle for MNDO, *J Mol Model* 2018, 24, 338. doi:10.1007/s00894-018-3874-6; b) M. Kriebel, A. Heßelmann, M. Hennemann, T. Clark. The Feynman dispersion correction for MNDO extended to F, Cl, Br and I, *Journal of Molecular Modeling* 2019, 25, 156. doi:10.1007/s00894-019-4038-z; c) M. Kriebel, A. Heßelmann, M. Hennemann, T. Clark. Correction to: The Feynman dispersion correction for MNDO extended to F, Cl, Br and I, *Journal of Molecular Journal of Molecular Modeling* 2019, 25, 257. doi:10.1007/s00894-019-4142-0
- [43] T. Clark, K. G. Byler, M. J. De Groot. Biological Communication via Molecular Surface, in *Proceedings of the International Beilstein Workshop, Bozen, Italy, 2008*, Logos Verlag, Bozen, Italy, 129-146. (https://www.beilstein-institut.de/en/publications/proceedings/bozen-2006)